Extremely important for phylogenetics: affects the validity of the "tree" assumption!
For fixed recombination rate $\rho=r/g$ in the limit $r\ll 1$, $g\ll 1$ and $N\gg 1$, the genealogical process is the coalescent with recombination (Hudson, 1983):
The number of surviving ancestral lineages $k$ evolves under the birth-death process corresponding to the following pair of reactions:
\begin{align*} 2L &\overset{\chi}{\longrightarrow} L\\ L &\overset{\rho}{\longrightarrow} 2L \end{align*}where $\chi=1/Ng$. The deterministic approximation for the evolution of $\langle k\rangle=\langle k\rangle$ is \begin{align*} \partial_t \langle k\rangle &\simeq -\frac{1}{2N}\langle k\rangle(\langle k\rangle-1) + \rho\langle k\rangle\\ &\propto \langle k\rangle(1-\langle k\rangle/k_c) \end{align*} where $k_c=1+2N\rho$.
$\langle k\rangle$ stabilizes at $k_c$, but noise eventually drives $k$ to 1 (GMRCA).
A gene conversion event refers to the replacement of a single contiguous stretch of sequence with a homologous stretch from a different parent. Incorporated into a modified CwR process by Wiuf and Hein (2000).
Can easily write down an expression for the posterior distribution for the ARG given an alignment:
$$P(G,\rho,N,\mu|A) = \frac{1}{P(A)}P(A|G,\mu)P(G|\rho,N)P(\rho,N,\mu)$$
In practice, this is non-trivial since:
Despite this, many approximate algorithms exist.