
D
RA

FT
14-7

-2
014

Bayesian evolutionary
analysis
with BEAST 2

Alexei J. Drummond and Remco R. Bouckaert

adru001
This is a draft of the book from 2014-07-14. Beware that it contains some uncorrected errors and differences from the published book.

This draft is made available “as is”. Enjoy.�

D
RA

FT
14-7

-2
014

D
RA

FT
14-7

-2
014

Contents

Preface page vii
Acknowledgements viii

Part I Theory 1

1 Introduction 3
1.1 Molecular phylogenetics 4
1.2 Coalescent theory 6
1.3 Virus evolution and phylodynamics 8
1.4 Before and beyond trees 9
1.5 Probability and inference 10

2 Evolutionary trees 20
2.1 Types of trees 20
2.2 Counting trees 23
2.3 The coalescent 25
2.4 Birth-death models 36
2.5 Trees within trees 41
2.6 Exercise 43

3 Substitution and site models 45
3.1 Continuous-time Markov process 46
3.2 DNA models 47
3.3 Codon models 52
3.4 Microsatellite models 53
3.5 Felsenstein’s likelihood 54
3.6 Rate variation across sites 55
3.7 Felsenstein’s pruning algorithm 57
3.8 Miscellanea 59

4 The molecular clock 61
4.1 Time-trees and evolutionary rates 61
4.2 The molecular clock 62
4.3 Relaxing the molecular clock 63

D
RA

FT
14-7

-2
014

iv Contents

4.4 Calibrating the molecular clock 68

5 Structured trees and phylogeography 71
5.1 Statistical phylogeography 71
5.2 Multi-type trees 72
5.3 Mugration models 74
5.4 The structured coalescent 74
5.5 Structured birth–death models 76
5.6 Phylogeography in a spatial continuum 76
5.7 Phylodynamics with structured trees 78
5.8 Conclusion 79

Part II Practice 81

6 Bayesian evolutionary analysis by sampling trees 83
6.1 BEAUti 84
6.2 Running BEAST 91
6.3 Analyzing the results 93
6.4 Marginal posterior estimates 94
6.5 Obtaining an estimate of the phylogenetic tree 95
6.6 Visualising the tree estimate 97
6.7 Comparing your results to the prior 98

7 Setting up and running a phylogenetic analysis 101
7.1 Preparing alignments 101
7.2 Choosing priors/model set-up 105
7.3 Miscellanea 117
7.4 Running BEAST 118

8 Estimating species trees from multilocus data 121
8.1 Darwin’s finches 121
8.2 Bayesian multispecies coalescent model from sequence data 124
8.3 *BEAST 125
8.4 SNAPP 128

9 Advanced analysis 133
9.1 Sampling from the prior 133
9.2 Serially sampled data 135
9.3 Demographic reconstruction 136
9.4 Ancestral reconstruction and phylogeography 140
9.5 Comparing different models 142
9.6 Simulation studies 145

10 Posterior analysis and post-processing 147

D
RA

FT
14-7

-2
014

Contents v

10.1 Trace log file interpretation 148
10.2 Model selection 152
10.3 Trouble shooting 156

11 Exploring phylogenetic tree space 163
11.1 Tree Set Analysis Methods 164
11.2 Summary Trees 168
11.3 DensiTree 172

Part III Programming 175

12 Getting started with BEAST 2 177
12.1 A quick tour of BEAST 2 178
12.2 BEAST core: BEAST-objects and inputs 181
12.3 MCMC library 183
12.4 The evolution library 189
12.5 Other bits and pieces 192
12.6 Exercise 192

13 BEAST XML 193
13.1 What is XML 193
13.2 BEAST file format and the parser processing model 194
13.3 An Annotated Example 199
13.4 Exercise 203

14 Coding and design patterns 204
14.1 Basic patterns 204
14.2 Input patterns 207
14.3 InitAndValidate patterns 209
14.4 CalculationNode patterns 210
14.5 Common extensions 212
14.6 Tips 213
14.7 Known ways to get into trouble 214
14.8 Exercise 215

15 Putting it all together 216
15.1 What is a package? 217
15.2 BEAUti 218
15.3 Variable selection based substitution model package example 223
15.4 Exercise 229

Bibliography 231
List of authors 255

D
RA

FT
14-7

-2
014

vi Contents

List of subjects 258

D
RA

FT
14-7

-2
014

Preface

This book consists of three parts; theory, practice and programming. The theory
part covers theoretical background, which you need to get some insight in the
various components of a phylogenetic analysis. This includes trees, substitution
models, clock models and of course the machinery used in Bayesian analysis such
as MCMC and Bayes factors.

In the practice part we start with a hands on phylogenetic analysis and explain
how to set up, run and interpret such an analysis. We examine various choices
of prior, where each is appropriate, and how to use software such as BEAUti,
FigTree and DensiTree to assist in a BEAST analysis. Special attention is paid to
advanced analysis such as sampling from the prior, demographic reconstruction,
phylogeography and inferring species trees from multilocus data. Interpreting
the results of an analysis requires some care, as explained in the post-processing
chapter, which has a section on troubleshooting with tips on detecting and pre-
venting failures in MCMC analysis. A separate chapter is dedicated to visualising
phylogenies.

BEAST 2.2 uses XML as a file format to specify various kinds of analysis.
In the third part, the XML format and its design philosophy are described.
BEAST 2.2 was developed as a platform for creating new Bayesian phylogenetic
analysis methods, by a modular mechanism for extending the software. In the
programming part we describe the software architecture and guide you through
developing BEAST 2.2 extensions.

We recommend that everyone reads Part I for background information, espe-
cially introductory Chapter 1. Part II and Part III can be read independently.
Users of BEAST should find much practical information in Part II, and may
want to read about the XML format in Part III. Developers of new methods
should read Part III, but will also find useful information about various methods
in Part II.

The BEAST software can be downloaded from http://beast2.org and for de-
velopers, source code is available from https://github.com/CompEvol/beast2/.
There is a lot of practical information available at the BEAST 2 wiki (http:
//beast2.org), including links to useful software such as Tracer and FigTree,
a list of the latest packages, and links to tutorials. The wiki is updated fre-
quently. A BEAST users’ group is accessible at http://groups.google.com/
group/beast-users.

http://beast2.org
https://github.com/CompEvol/beast2/
http://beast2.org
http://beast2.org
http://groups.google.com/group/beast-users
http://groups.google.com/group/beast-users

D
RA

FT
14-7

-2
014

Acknowledgements

Many people made BEAST what it is today. Andrew Rambaut brought the first
version of BEAST to fruition with AJD in the ‘Oxford years’ and has been one
of the leaders of development ever since. Marc Suchard arrived on the scene a
few years later, precipitating great advances in the software and methods and
continues to have a tremendous impact. All of the members of the core BEAST
development team have been critical to the software’s success.

Draft chapters of this book were greatly improved already by feedback from a
large number of colleagues, including in no particular order, David Bryant, David
Welch, Denise Kühnert, Rampal Etienne, Russell Gray, Sasha Gavryushkina,
Simon Greenhill, Tim Vaughan, Walter Xie.

Paul O. Lewis created the idea for Figure 1.6. Section 2.3 is derived from work
by Joseph Heled. Tanja Stadler co-wrote Chapter 2. Some material for Chapters
7 and 10 is derived from messages on the BEAST mailing list and the FAQ of
the BEAST wiki. Section 8.4 is partly derived from the Rough guide to SNAPP
Bouckaert and Bryant 2012. Walter Xie was helpful in quality assurance of the
software, in particular regression testing of BEAST ensuring that the analyses
are valid. Parts of Chapter 4 derive from previous published work by AJD and
co-authors.

The development of BEAST 2 was supported by three meetings funded by
NESCENT. This work was funded by a Rutherford Discovery Fellowship from
the Royal Society of New Zealand.

This book was written in New Zealand, which has a British heritage and an
American influence. Consequently, New Zealand allows both British and Amer-
ican spelling and you may see different spelling styles mixed throughout the
book.

D
RA

FT
14-7

-2
014

Acknowledgements ix

Summary of most significant capabilities of BEAST 2

Analysis Estimate phylogenies from alignments
Estimate dates of most recent common ancestors
Estimate gene and species trees
Infer population histories
Epidemic reconstruction
Estimate substitution rates
Phylogeography
Path sampling
Simulation studies

Models Trees Gene trees, species trees, structured coalescent,
serially sampled trees

Tree Likelihood Felsenstein, threaded, Beagle
Continuous, Ancestral reconstruction
SNAPP
Auto Partition

Substitution models JC96, HKY, TN93, GTR
Covarion, Stochastic Dollo
RB, substBMA
Blosum62, CPREV, Dayhoff, JTT, MTREV, WAG

Frequency models Fixed, estimated, empirical
Sitemodels Gamma site model, Mixture site model
Tree Priors Coalescent âĂŞ constant, exponential, skyline

Birth Death âĂŞ Yule, Birth Death Sampling Skyline
Yule with callibration correction
Multi species coalescent

Clock models Strict, relaxed, random
Prior distributions Uniform, 1/X, Normal, Gamma, Beta, etc.

Tools BEAUti GUI for specifying models
Support for hierarchical models
flexible partition and parameter linking
Read and write models
Extensible through templates
Manage BEAST packages

BEAST Run analysis specified by BEAUti
ModelBuilder GUI for visualising models
LogCombiner Tool for manipulating log files
EBSPAnalyser Reconstruct population history from EBSP analysis
DensiTree Tool for analysing tree distributions
TreeAnnotator Tool for creating summary trees from tree sets
TreeSetAnalyser Tool for calculating statistics on tree sets
SequenceSimulator Generate alignments for simulation studies

Check Resuming runs when ESS is not satisfactory
pointing Exchange partial states to reduce burn-in

Documen- Tutorials, Wiki, User forum
tation this book

Package Facilitate fast bug fixes and release cycles independent of core release
support cycle

Package development independent of core releases

D
RA

FT
14-7

-2
014

D
RA

FT
14-7

-2
014

Part I

Theory

D
RA

FT
14-7

-2
014

D
RA

FT
14-7

-2
014

1 Introduction

This book is part science, part technical, and all about the computational anal-
ysis of heritable traits: things like genes, languages, behaviours and morphology.
This book is centred around the description of the theory and practice of a
particular open source software package called BEAST (Bayesian evolutionary
analysis by sampling trees). The BEAST software package started life as a small
science project in New Zealand but it has since grown tremendously through the
contributions of many scientists from around the world: chief among them the
research groups of Alexei Drummond, Andrew Rambaut and Marc Suchard. A
full list of contributors to the BEAST software package can be found later in the
book.

Very few things challenge the imagination as much as does evolution. Every
living thing is the result of the unfolding of this patient process. While the
basic concepts of Darwinian evolution and natural selection are second nature
to many of us, it is the detail of life’s tapestry which still inspires an awe of the
natural world. The scientific community has spent a couple of centuries trying
to understand the intricacies of the evolutionary process, producing thousands
of scientific articles on the subject. Despite this herculean effort, it is tempting
to say that we have only just scratched the surface.

As with many other fields of science, the study of biology has rapidly become
dominated by the use of computers in recent years. Computers are the only way
that biologists can effectively organize and analyse the vast amounts of genomic
data that are now being collected by modern sequencing technologies. Although
this revolution of data has really only just begun, it has already resulted in a
flourishing industry of computer modelling of molecular evolution.

This book has the modest aim of describing this still new computational science
of evolution, at least from the corner we are sitting in. In writing this book we
have not aimed for it to be comprehensive and gladly admit that we mostly focus
on the models that the BEAST software currently supports. Dealing, as we do,
with computer models of evolution, there is a healthy dose of mathematics and
statistics. However we have made a great effort to describe in plain language, as
clearly as we can, the essential concepts behind each of the models described in
this book. We have also endeavoured to provide interesting examples to illustrate
and introduce each of the models. We hope you enjoy it.

D
RA

FT
14-7

-2
014

4 Introduction

1.1 Molecular phylogenetics

The informational molecules central to all biology are deoxyribonucleic acid
(DNA), ribonucleic acid (RNA) and protein sequences. These three classes of
molecules are commonly referred to in the molecular evolutionary field as molec-
ular sequences, and from a mathematical and computational point of view an
informational molecule can often be treated simply as a linear sequence of sym-
bols on a defined alphabet (see Figure 1.1). The individual building blocks of
DNA and RNA are known as nucleotides while proteins are composed of twenty
different amino acids. For most life forms it is the DNA double-helix that stores

Figure 1.1 The alphabets of the three informational molecular classes.

DNA {A,C,G,T}
RNA {A,C,G,U}
Proteins {A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y}

the essential information underpinning the biological function of the organism
and it is the (error-prone) replication of this DNA that transmits this informa-
tion from one generation to the next. Given that replication is a binary reaction
that starts with one genome and ends with two similar if not identical genomes,
it is unsurprising that the natural and appropriate structure for visualizing the
replication process over multiple generations is a bifurcating tree. At the broad-
est scale of consideration the structure of this tree represents the relationships
between species and higher-order taxonomic groups. But even when considering
a single gene within a single species, the ancestral relationships among genes
sampled from that species will be represented by a tree. Such trees have come
to be referred to as phylogenies and it is becoming clear that the field of molec-
ular phylogenetics is relevant to almost every scientific question that deals with
the informational molecules of biology. Furthermore many of the concepts devel-
oped to understand molecular evolution have turned out to transfer with little
modification to the analysis of other types of heritable information in natural
systems, including language and culture. It is unsurprising then that a book on
computational evolutionary analysis would start with phylogenetics.

The study of phylogenetics is principally concerned with reconstructing the
evolutionary history (phylogenetic tree) of related species, individuals or genes.
Although algorithmic approaches to phylogenetics pre-date genetic data, it was
the availability of genetic data, first allozymes and protein sequences, and then
later DNA sequences, that provided the impetus for development in the area.

A phylogenetic tree is estimated from some data. Data is typically a multiple
sequence alignment (see Figure 1.2), representing a set of homologous (derived
from a common ancestor) genes or genomic sequences that have been aligned,
so that their comparable regions are matched up. The process of aligning a
set of homologous sequences is itself a hard computational problem, and is in

D
RA

FT
14-7

-2
014

1.1 Molecular phylogenetics 5

Figure 1.2 A small multiple sequence alignment of mitochondrial sequence fragments
isolated from 12 species of primate. The alignment has 898 alignment columns and
the individual sequences vary in length from 893 to 896 nucleotides long. Individual
differences from the consensus sequence are highlighted. 373/898 (41.5%) sites are
identical across all 12 species and the average pairwise identity is 75.7%. The data
matrix size is 10,776 (898× 12) with only 30 gap states. This represents a case in
which obtaining an accurate multiple sequence alignment from unaligned sequences is
quite easy and taking account of alignment uncertainty is probably unnecessary for
most questions.

D
RA

FT
14-7

-2
014

6 Introduction

fact entangled with that of estimating a phylogenetic tree (Lunter et al. 2005;
Redelings and Suchard 2005). Nevertheless, following convention we will - for the
most part - assume that a multiple sequence alignment is known and predicate
phylogenetic reconstruction on it.

The statistical treatment of phylogenetics was made feasible by Felsenstein
(1981) who described a computationally tractable approach to computing the
probability of the sequence alignment given a phylogenetic tree and a model
of molecular evolution, Pr{D|T,Ω}. This quantity is known as the phylogenetic
likelihood of the tree and can be efficiently computed by the peeling algorithm
(see chapter 3). The statistical model of evolution that Felsenstein chose was
a continuous-time Markov process (CTMP; see Section 3.1). A CTMP can be
used to describe the evolution of a single nucleotide position in the genome, or
for protein-coding sequences, either a codon position or the induced substitution
process on the translated amino acids. By assuming that sites in a sequence
alignment are evolving independently and identically a CTMP can be used to
model the evolution of an entire multiple sequence alignment.

Although probabilistic modeling approaches to phylogenetics actually pre-date
Sanger sequencing (Edwards and Cavalli-Sforza 1965), it was not until the last
decade that probabilistic modelling became the dominant approach to phylogeny
reconstruction (Felsenstein 2001). Part of that dominance has been due to the
rise of Bayesian inference (Huelsenbeck et al. 2001), with its great flexibility in
describing prior knowledge, its ability to be applied via the Metropolis-Hastings
algorithm to complex highly parametric models, and the ease with which mul-
tiple sources of data can be integrated into a single analysis. The history of
probabilistic models of molecular evolution and phylogenetics is a history of
gradual refinement; a process of selection of those modelling variations that have
the greatest utility in characterizing the ever-growing empirical data. The utility
of a new model has been evaluated either by how well it fits the data (formal
model comparison or goodness-of-fit tests) or by the new questions that it allows
a researcher to ask of the data.

1.2 Coalescent theory

When a gene tree has been estimated from individuals sampled from the same
population, statistical properties of the tree can be used to learn about the popu-
lation from which the sample was drawn. In particular the size of the population
can be estimated using Kingman’s n-coalescent, a stochastic model of gene ge-
nealogies described by Kingman (1982). Coalescent theory has developed greatly
in the intervening decades and the resulting genealogy-based population genetics
methods are routinely used to infer many fundamental parameters governing
molecular evolution and population dynamics, including effective population size
(Kuhner et al. 1995), rate of population growth or decline (Drummond et al.
2002; Kuhner et al. 1998), migration rates and population structure (Beerli and

D
RA

FT
14-7

-2
014

1.2 Coalescent theory 7

Felsenstein 1999; Beerli and Felsenstein 2001; Ewing and Rodrigo 2006a; Ew-
ing et al. 2004), recombination rates and reticulate ancestry (Bloomquist and
Suchard 2010; Kuhner et al. 2000).

When the characteristic time scale of demographic fluctuations are comparable
to the rate of accumulations of substitutions then past population dynamics are
“recorded” in the substitution patterns of molecular sequences.

The coalescent process is highly variable, so sampling multiple unlinked loci
(Felsenstein 2006; Heled and Drummond 2008) or increasing the temporal spread
of sampling times (Seo et al. 2002) can both be used to increase the statistical
power of coalescent-based methods and improve the precision of estimates of
both population size and substitution rate (Seo et al. 2002).

In many situations the precise functional form of the population size history is
unknown, and simple population growth functions may not adequately describe
the population history of interest. Non-parametric coalescent methods provide
greater flexibility by estimating the population size as a function of time directly
from the sequence data and can be used for data exploration to guide the choice
of parametric population models for further analysis. These methods first cut
the time tree into segments, then estimate the population size of each segment
separately according to the coalescent intervals within it.

Recently there has been renewed interest in developing mathematical model-
ing approaches and computational tools for investigating the interface between
population processes and species phylogenies. The multispecies coalescent is a
model of gene coalescence within a species tree (Figure 1.3; see Section 2.5.1
and Chapter 8 for further details). There is currently a large amount of develop-
ment of phylogenetic inference techniques based on the multispecies coalescent
model (Bryant et al. 2012; Heled and Drummond 2010; Liu et al. 2008, 2009a,b).
Its many advantages over standard phylogenetic approaches center around the
ability to take into account real differences in the underlying gene tree among
genes sampled from the same set individuals from closely related species. Due to
incomplete lineage sorting it is possible for unlinked genes from the same set of
multi-species individuals to have different gene topologies, and for a particular
gene to exhibit a gene tree that has different relationships among species than
the true species tree. The multi-species coalescent can be employed to estimate
the common species tree that best reconciles the coalescent-induced differences
among genes, and provides more accurate estimates of divergence time and mea-
sures of topological uncertainty in the species tree. This exciting new field of
coalescent-based species tree estimation is still in its infancy and there are many
promising directions for development including incorporation of population size
changes (Heled and Drummond 2010), isolation with migration (Hey 2010), re-
combination and lateral gene transfer among others.

D
RA

FT
14-7

-2
014

8 Introduction

!"#$%&'(")

*(
+
,

-".'(/ +&0)(."/'(/ #&.1$%$/ "%(1&2,&

34356

34353

34376

34373

34336

3

3 3437 3435 3438 3439

Figure 1.3 A four taxa species tree with an embedded gene tree that relates multiple
individuals from each of the sampled species. The species tree has (linear) population
size functions associated with each branch, visually represented by the width of each
species branch on the x-axis. The y-axis is a measure of time.

1.3 Virus evolution and phylodynamics

A number of good recent reviews have been written about the impact of statis-
tical phylogenetics and evolutionary analysis on the study of viral epidemiology
(Kühnert et al. 2011; Pybus and Rambaut 2009; Volz et al. 2013). Although
epidemic modeling of infectious diseases has a long history in both theoretical
and empirical research, the term phylodynamics has a recent origin reflecting a
move to integrate theory from mathematical epidemiology and statistical phylo-
genetics into a single predictive framework for studying viral evolutionary and
epidemic dynamics. Many RNA viruses evolve so quickly that their evolution can
be directly observed over months, years and decades (Drummond et al. 2003).
Figure 1.4 illustrates the effect that this has on the treatment of phylogenetic
analysis.

Molecular phylogenetics has had a profound impact on the study of infectious
diseases, particularly rapidly evolving infectious agents such as RNA viruses. It
has given insight into the origins, evolutionary history, transmission routes and
source populations of epidemic outbreaks and seasonal diseases. One of the key
observations about rapidly evolving viruses is that the evolutionary and ecolog-
ical processes occur on the same time scale (Pybus and Rambaut 2009). This

D
RA

FT
14-7

-2
014

1.4 Before and beyond trees 9

t0t1t2

Figure 1.4 A hypothetical serially sampled gene tree of a rapidly evolving virus,
showing that the sampling time interval (∆t = t2 − t0) represents a substantial
fraction of the time back to the common ancestor. Red circles represent sampled
viruses (three viruses sampled at each of three times) and yellow circles represent
unsampled common ancestors.

is important for two reasons. First, it means that neutral genetic variation can
track ecological processes and population dynamics, providing a record of past
evolutionary events (e.g., genealogical relationships) and past ecological/popu-
lation events (geographical spread and changes in population size and structure)
that were not directly observed. Second, the concomitance of evolutionary and
ecological processes leads to their interaction that, when non-trivial, necessitates
joint analysis.

1.4 Before and beyond trees

Sequence alignment: After obtaining molecular sequences, a multiple sequence
alignment must be performed before they can be analysed. Sequence alignment is
a huge topic in itself (Durbin et al. 1998; Rosenberg 2009), and many techniques,
including dynamic programming, hidden Markov models, and optimization al-
gorithms have been applied to this task. Clustal (Larkin et al. 2007) is a limited
but widely used program for this task. It uses a guide tree constructed by a
distance-based method to progressively construct of a multiple sequence align-
ment via pairwise alignments. Since most Bayesian phylogenetic analysis aim to

D
RA

FT
14-7

-2
014

10 Introduction

reconstruct a tree, and the clustal algorithms already assumed some tree to guide
it, it is possible that the analysis is biased towards recovering the guide tree. This
guide tree is based on a relatively simple model is may contain errors and result
in sub-optimal alignments. T-Coffee (Notredame et al. 2000) is another popular
program that builds a library of pairwise alignments to guide the construction
of the complete alignment.

A more principled approach in line with the philosophy of this book is to per-
form statistical alignment in which phylogenetic reconstructions and sequence
alignments are simultaneously evaluated in a joint Bayesian analysis (Aruna-
puram et al. 2013; Bradley et al. 2009; Lunter et al. 2005; Novák et al. 2008;
Redelings and Suchard 2005; Suchard and Redelings 2006). Though it has been
shown that uncertainty in the alignment can lead to different conclusions (Wong
et al. 2008), in most cases it is hard to justify the extra computational effort
required, statistical alignment is not yet available in BEAST 2.2.

Ancestral Recombination Graphs: A phylogenetic tree is not always suffi-
cient to reflect the sometimes complex evolutionary origin of a set of homologous
gene sequences when processes such as recombination, reassortment, gene dupli-
cation or lateral gene transfer are involved in the evolutionary history.

Coalescent theory has been extended to account for recombination due to ho-
mologous crossover (Hudson, 1990) and the ancestral recombination graph (ARG)
(Bloomquist and Suchard 2010; Griffiths and Marjoram 1996; Kuhner et al. 2000;
Kuhner 2006) is the combinatorial object that replaces a phylogenetic tree as the
description of the ancestral (evolutionary) history. However, in this book, we will
limit ourselves to trees.

1.5 Probability and inference

At the heart of this book is the idea that much of our understanding about molec-
ular evolution and phylogeny will come from a characterization of the results of
random or stochastic processes. The sources of this randomness are varied, in-
cluding the vagaries of chance that drive processes like mutation, birth, death
and migration. An appropriate approach to modelling data that is generated
by random processes is to consider the probabilities of various hypotheses given
the observed data. In fact the concept of probability and the use of probability
calculus within statistical inference procedures is pervasive in this book. We will
not however attempt to introduce the concept of probability or inference in any
formal way. We suggest (Bolstad 2011; Brooks et al. 2010; Gelman et al. 2004;
Jaynes 2003; MacKay 2003) for a more thorough introduction or reminder about
this fundamental material. In this section we will just lay out some of the terms,
concepts and standard relationships and give a brief introduction to Bayesian
inference.

D
RA

FT
14-7

-2
014

1.5 Probability and inference 11

1.5.1 A little probability theory

A random variable X represents a quantity whose value is uncertain and de-
scribed by a probability distribution over all possible values. The set of possible
values is called the sample space, denoted SX .

A probability distribution Pr(·) on discrete mutually exclusive values, x in
sample space SX (i.e. x ∈ SX) sums to 1 over all values so that:

∑
x∈SX

Pr(x) = 1,

and 0 ≤ Pr(x) ≤ 1 for all x. In this case we say X is discrete.
A classic example of SX is the set of faces of a die, SX = { , , , , , },

and for a random variable representing the outcome of rolling a fair die, Pr(X =
x) = 1/6 for all x ∈ SX .

A conditional probability Pr(X = x|Y = y) gives the probability that random
variable X takes on value x, given the condition that the random variable Y takes
on value y ∈ SY . This can be shortened to Pr(x|y) and the following relation
exists:

Pr(x) =
∑
y∈SY

Pr(x|y) Pr(y). (1.1)

The joint probability of both X = x and Y = y occurring is

Pr(x, y) = Pr(x|y) Pr(y).

This leads to another way to write Equation 1.1:

Pr(x) =
∑
y∈SY

Pr(x, y),

and Pr(x) is known as the marginal probability of X = x in the context of the
joint probability distribution on (X,Y).

A probability density function f(x) defines a probability distribution over a
continuous parameter x ∈ SX (where SX is now a continuous space) so that the
integral of the density over the sample space sums to 1:∫

x∈SX
f(x)dx = 1,

and f(x) is everywhere non-negative, but may take on values greater than 1 (see
Figure 1.5 for an example). In this case the random variable X is continuous,
and takes on a values in set E ⊆ SX with probability:

Pr(X ∈ E) =
∫
x∈E

f(x)dx.

D
RA

FT
14-7

-2
014

12 Introduction

0 0.5 1 1.5 2
0

1

2

x

pr
ob

ab
ili

ty
de

ns
ity

f
(x

)

Figure 1.5 A probability density function f(x) = 2e−2x (i.e. an exponential
distribution with a rate of 2). The area under the curve for
Pr(0.5 ≤ X ≤ 1.0) =

∫ 1.0
0.5 f(x)dx ≈ 0.2325442 is filled in.

This expresses the relationship between probabilities and probability densities on
continuous random variables, where the left-hand side of the equation represents
the probability of the continuous random variable X taking on a value in the
set E , and the right-hand side is the area under the density function in the set
E (see Figure 1.5). If X is univariate real and E is interval [a, b] then we have:

Pr(a ≤ X ≤ b) =
∫ b

a

f(x)dx.

When x has probability density f(·) we write X ∼ f(·). Finally the expectation
E(·) of a random variable X ∼ f(·) can also be computed by an integral:

E(X) =
∫
x∈SX

xf(x)dx.

1.5.2 Stochastic processes

A stochastic process is defined as a set of random variables {Xt} indexed by
a totally ordered set t ∈ T , which is a bit too general to be useful. In this
book, we will mostly consider stochastic processes where the variables {Xt} are
discrete and t is continuous and represents time to describe models of evolution
(Chapter 3) and birth/death processes (Chapter 2). Continuous state space and
continuous time processes can be used in phylogeographic models (Chapter 5)
and branch rate models (Chapter 4), but we will assume Xt to be discrete in the
following. The relation between the stochastic variables is often described by a
distribution Pr(Xt=u|Xt≤s) with u < s. The distribution is usually associated
with the name of the process, for example, when Pr is a Poisson distribution,

D
RA

FT
14-7

-2
014

1.5 Probability and inference 13

we speak of a Poisson process. When Pr(Xt=u|Xt≤s) = Pr(Xt=u|Xt=s), we call
the process Markovian. Most processes we deal with are continuous time Markov
processes (CTMP).

Stochastic processes cover a wide area requiring advanced mathematics. For
further information on stochastic processes, (Allen 2003) offers a good introduc-
tion. (Stewart 1994) is useful for solving CTMPs numerically.

1.5.3 Bayesian inference

Bayesian inference is based on Bayes’ formula:

p(θ|D) = p(D|θ)p(θ)
p(D) ,

where p(.) could denote either a probability or a probability density, depending
on whether θ and D are discrete or continuous. In a phylogenetic context, the
data D is generally a discrete multiple sequence alignment and the parameters
include continuous components (such as branch lengths and substitution rate
parameters) so we have:

f(θ|D) = Pr(D|θ)f(θ)
Pr(D) , (1.2)

where D is the (discrete) sequence data, θ the set of (continuous) parameters
in the model, including the tree, substitution model parameters, clock rates,
et cetera1. f(θ|D) is called the posterior distribution, Pr(D|θ) is the likelihood,
f(θ) the prior distribution and Pr(D) the marginal likelihood. Informally, the
reasoning starts with some prior belief about the model, encoded in the prior
f(θ). After seeing some evidence in the form of data D, we update our belief
about the model by multiplying the prior with the likelihood Pr(D|θ), which is
typically Felsenstein’s phylogenetic likelihood. Our updated belief is the posterior
f(θ|D). Specifying a prior distribution that represents prior knowledge about the
model is not trivial and in fact a large part of this book deals with this topic.

As Equation (1.2) shows, we also need the marginal likelihood Pr(D) to com-
plete the calculation. It is called the marginal likelihood since Pr(D) can be
interpreted as the distribution f(D|θ) marginalised over θ, that is Pr(D) =∫
θ
f(D|θ)f(θ)dθ =

∫
θ
f(D, θ)dθ. The marginal likelihood is almost never easy to

compute, but fortunately, since it is constant during any analysis, the standard
algorithm for sampling from the posterior does not require it (see section on
Markov chain Monte Carlo below for details).

Bayesian inference fundamentally differs from many other methods of inference
1 We use Pr(·) to denote probability distributions over discrete states, such as an alignment.

Further, we use f(·) to denote densities over continuous spaces, such as rates or divergence
times. Where the space is partly discrete and partly continuous, such as for (time-)trees,
we will use the notation for densities.

D
RA

FT
14-7

-2
014

14 Introduction

in that the outcome of an analysis is a probability distribution. For example,
when inferring the age of the common ancestor of a set of taxa, instead of a
point estimate, a Bayesian analysis results in a posterior distribution of ages.
From this distribution, we can report for example the posterior mean and 95%
highest posterior density (HPD) interval. The x% HPD interval is the smallest
interval that includes x% of the posterior probability.

The Bayesian approach to comparing theory A with theory B is to use a Bayes
factor, which is defined as the ratio of the marginal likelihoods. For example, to
compare model A with model B we compare the marginal likelihood PrA(D)
under model A with that of model B, PrB(D), and calculate the Bayes factor as

BF (A,B) = PrA(D)
PrB(D)

The arguments A and B are not written when it is clear what the hypotheses
are from the context. Bayes factors are typically represented by taking the log of
BF and if it is large and positive, this indicates support for model A (see Table
9.1 for interpreting BF values). Confusingly, both BF and log(BF) are called
Bayes factor so one has to be aware which version is used. Though it sounds
simple in theory, in practice it turns out to be quite hard to get good estimates
for the marginal likelihood, as explained in Section 10.2.

1.5.4 Non-informative and informative priors

An early tradition of Bayesian inference was to use non-informative priors. Such
priors are designed to “leave the data to tell the story” and are meant to repre-
sent the investigator’s ignorance about the values of the parameters before the
inference is performed. More recently this approach has been termed “objective”
Bayesian inference as opposed to the “subjective” Bayesian inference performed
when informative priors are used.

We will not attempt a careful appraisal of the differences between these two
philosophies other than to make a few general remarks about when each of these
approaches might be warranted.

It has been known since Laplace (1812) that if the constant prior f(θ) ∝ 1
is used, then – with small sample sizes – an inconsistency can occur where the
result of a Bayesian analysis changes significantly based on the choice of the
parameterization (Berger and Bernardo 1992). A uniform prior in one param-
eterization is typically not a uniform prior in another parameterization. This
problem was re-visited in a phylogenetic context by Joseph Felsenstein in his
book on phylogenetic inference (Felsenstein 2004), as an argument against us-
ing Bayesian inference for phylogenetics. Nevertheless, it has been suggested that
this approach can sometimes be reasonable because the parameterization is often
chosen to reflect some notion of prior uniformity (Berger and Bernardo 1992).
Furthermore, it was precisely the inconsistency under re-parameterization that

D
RA

FT
14-7

-2
014

1.5 Probability and inference 15

led Jeffreys (Jeffreys 1946, 1961) to develop his eponymous prior, one that is
invariant to changes in parameterization:

f(θ) =
√

det(I(θ)), (1.3)

where I(·) is the Fisher Information matrix of θ and det(·) is the determinant of
a matrix. This prior works well on one-dimensional problems, but its limitations
for larger problems has led to the development of reference priors (Berger and
Bernardo 1992).

1.5.5 Markov chain Monte Carlo

In Bayesian inference we want to characterize the posterior distribution, which
can be thought of as a multivariate function representing a convoluted landscape
as shown in Figure 1.6. The figure shows just two dimensions, but since we are
dealing with trees, the space has many more dimensions and is rather complex.
The Markov chain Monte Carlo (MCMC) algorithm (Hastings 1970; Metropolis
et al. 1953) is an efficient way to explore the landscape. It provides a method of
drawing samples from the posterior, that is, it samples values of the parameters
θ1, θ2, θ3, . . . in proportion to their probability under the posterior distribution.
These samples then form the basis of the study of the posterior such as calculating
the mean. The application of MCMC to phylogenetic inference (Drummond
and Rambaut 2007; Huelsenbeck and Ronquist 2001; Larget and Simon 1999;
Lartillot et al. 2009; Lewis et al. 2005; Li et al. 2000; Mau and Newton 1997; Mau
et al. 1999; Pagel and Meade 2004; Yang and Rannala 1997) and genealogical
population genetics (Beerli 2006; Drummond et al. 2002; Ewing et al. 2004;
Kuhner 2006; Vaughan et al. 2014; Wilson and Balding 1998) has received much
attention.

The MCMC algorithm works as follows: as shown in Figure 1.6, the algo-
rithm maintains a location in the landscape represented by an instantiation of
the parameters θ. This is the current state. A new state θ′ is proposed through
a proposal distribution q(θ′|θ), which typically favours a state that is close by,
sometimes differing in the value of only a single parameter. If the proposal dis-
tribution is symmetric, the new state is accepted with probability

min
(

1, f(θ′|D)
f(θ|D)

)
, (1.4)

hence if the posterior of the new state θ′ is better it is always accepted, and it
if it worse it is accepted by drawing a random number from the unit interval and
if the number is less than the ratio f(θ′|D)/f(θ|D) the new state is accepted.
Either way, the step count of the chain is incremented.

A component of the proposal distribution may be termed an operator. Since a
single operator typically only moves the state a small amount, the states θ and
θ′ will be highly dependent. However, after a sufficiently large number of steps,

D
RA

FT
14-7

-2
014

16 Introduction

0

2

4

6

8

10

12

14

16

18

20

0

Propose to step from
10 to 2. Accept with
probability 2/10

Propose to step
from 18 to 19.5.
Always accept
increase

Propose to step
from 14 to 12. Accept
with probability 12/14

0

0

-26
-24
-22
-20
-18
-16
-14
-12
-10
-8

Figure 1.6 Left, posterior landscapes can contain many local optima. The MCMC
sampler aims to return more samples from high posterior areas and fewer from low
posterior regions. If run for sufficiently long, the sampler will visit all points. Right,
the MCMC ‘robot’ evaluates a proposal location in the posterior landscape. If the
proposed location is better, it accepts the proposal and moves to the new location. If
the proposed location is worse, it will calculate the ratio of the posterior at the new
location and that of the current location and accepts a step with probability equal to
this ratio. So, if the proposed location is slightly worse, it will be accepted with high
probability, but if the proposed location is much worse, it will almost never be
accepted.

the states will become independent samples from the posterior. So, once every
number of steps, the posterior and various attributes of the state are sampled and
stored in a trace log and tree logs. Note that if the number of steps is too small,
subsequent samples will still be autocorrelated, which means that the number of
samples can be larger than the effective sample size (ESS).

It is a fine art to design and compose proposal distributions and the operators
that implement them. The efficiency of MCMC algorithms crucially depends on
a good mix of operators forming the proposal distribution. Note that a proposal
distribution q(θ′|θ) differs from the target distribution f(θ|D) in that changes to
the former only affect the efficiency with which MCMC will produce an estimate
of the latter. Some operators are not symmetric, so that q(θ′|θ) 6= q(θ|θ′). How-
ever, the MCMC algorithm described above assumes the probability of proposing
θ′ when in state θ is the same as the probability of proposing θ when in state
θ′. The Metropolis-Hastings algorithm (Hastings 1970) is an MCMC algorithm
that compensates to maintain reversibility by factoring in a Hastings ratio and
accepts a proposed state with probability

α = min
(

1, f(θ′|D)
f(θ|D)

q(θ|θ′)
q(θ′|θ)

)
, (1.5)

D
RA

FT
14-7

-2
014

1.5 Probability and inference 17

The Hastings ratio corrects for any bias introduced by the proposal distribution.
Correct calculation and implementation of non-symmetric operators in complex
problems like phylogenetics is difficult (Holder et al. 2005).

Green (Green 1995; Green et al. 2003) describes a general method to calculate
the Hastings ratio that also work when θ is not of fixed dimension. Green’s recipe
assumes that θ′ can be reached from θ by selecting one of more random variables
u, and likewise θ can be reached from θ′ by selecting u′ so that the vectors
(θ′, u′) and (θ, u) have the same dimension. Let g and g′ be the probability
(densities) of selecting u and u′ respectively. Green showed that the ratio q(θ|θ′)

q(θ′|θ)

can be calculated as g′(u′)
g(u) |J | where g(u) and g′(u′) is the density of u and u′

respectively, and |J | is the Jacobian of the tranformation (θ, u)→ (θ′, u′).
For example, a scale operator with scale factor β ∈ (0, 1) has a proposal

distribution qβ(θ′|θ) that transforms a parameter θ′ = uθ by selecting a random
number u uniformly from the interval (β, 1

β). Note that this scale operator has
a probability of (1 − β)/(1

β − β) of decreasing and thus a higher probability of
increasing θ, so the Hastings ratio cannot be 1. Moving between (θ, u) and (θ′, u′)
such that θ′ = uθ requires that u′ = 1/u. Consequently, the HR when selecting
u is

HR = g(u′)
g(u)

∣∣∣∣∂(θ′, u′)
∂(θ, u)

∣∣∣∣ = 1
1
β − β

/
1

1
β − β

∣∣∣∣ ∂θ′/∂θ ∂θ′/∂u

∂(1/u)/∂θ ∂(1/u)/∂u

∣∣∣∣
=
∣∣∣∣u θ

0 1
u2

∣∣∣∣ = 1
u
. (1.6)

Operators typically only change a small part of the state, for instance only the
clock rate while leaving the tree and substitution model parameters the same.
Using operators that sample from the conditional distribution of a subset of
parameters given the remaining parameters results in a Gibbs sampler (Geman
and Geman 1984), and these operators can be very efficient in exploring the
state space, but can be hard to implement since it requires that this conditional
distribution is available.

Operators often have tuning parameters that influence how radical the propos-
als are. For the scale operator mentioned above, small values of β lead to bold
moves, while values close to 1 lead to timid proposals. The value of β is set at
the start of the run, but it can be tuned during the MCMC run so that it makes
more bold moves if many proposals are accepted, or more timid if many are
rejected. For example, in the BEAST inference engines (Bouckaert et al. 2014;
Drummond et al. 2012), the way operator parameters are tuned is governed by
an operator schedule, and there are number of tuning functions. Tuning typically
only changes the parameters much during the start of the chain, and the tuning
parameter will settle on a specific value as the chain progresses, guaranteeing the
correctness of the resulting sample from the posterior distribution. In BEAST,
not every operator has a tuning parameter, but if they do, its value will be re-

D
RA

FT
14-7

-2
014

18 Introduction

 − r1 r2 r3
r4 − r5 r6
r7 r8 − r9
r10 r11 r12 −


 − 1 0 0

1 − 1 0
0 1 − 1
0 0 1 −


 − r1 0 0
r4 − r5 0
0 r8 − r9
0 0 r12 −


Figure 1.7 Left, rate matrix where all rates are continuously sampled. Middle,
indicator matrix with binary values that are sampled. Right, rate matrix that is
actually used, which combines rate from the rate matrix on the left with indicator
variables in the middle.

ported at the end of a run, and suggest different values if the operator does not
perform well.

It is quite common that the parameter space is not of a fixed dimension,
for example when a nucleotide substitution model is chosen but the number
of parameters is unknown. The MCMC algorithm can accommodate this using
reversible jump (Green 1995) or Bayesian variable selection (BSVS, e.g. (Kuo and
Mallick 1998; Wu and Drummond 2011; Wu et al. 2013)). With reversible jump,
the state space actually changes dimension, which requires care in calculating the
Hastings ratios of the operators that propose dimension changes, but is expected
to be more computationally efficient than BSVS. BSVS involves a state space
that contains the parameters of all the sub-models. A set of boolean indicator
variables are also sampled that determine which model parameters are used and
which are excluded from the likelihood calculation in each step of the Markov
chain. Figure 1.7 shows an example for a rate matrix. The unused parameters
are still part of the sample space, and a prior is defined on them so proposals
are still performed on these unused parameters, making BSVS less efficient than
reversible jump. However, the benefit of BSVS is that it is easy to implement.
EBSP (Heled and Drummond 2008) and discrete phylogeography (Lemey et al.
2009a) are examples that use BSVS, and the RB substitution model in the RBS
plug-in is an example that uses reversible jump.

1.5.6 The appeal of Bayesian analysis

After this short introduction to Bayesian methods, one may wonder what the ap-
peal is over maximum likelihood (ML) and parsimony based methods in phyloge-
netic analysis. There are both theoretical and practical advantages. Arguably, the
conflict between probabilistic based methods and cladistic parsimony as chroni-
cled by Felsenstein (2001) has resulted in a split into two different schools where
the probabilists use model based methods and the others do not. Without mod-
els it is hard to quantify the uncertainty in an analysis, which is a requisite for
doing science.

ML methods find the model parameter values that maximise the probability
of the data D, that is maxθ Pr(D|θ). Bayesian inference finds the posterior dis-
tribution Pr(θ|D). Firstly, this implies that through the Bayesian method we can
infer generalisations about the model represented by θ, while in ML this cannot

D
RA

FT
14-7

-2
014

1.5 Probability and inference 19

be justified (Jaynes 2003). Secondly, since Bayesian methods return a distribu-
tion instead of a single set of parameter values, it is easy to answer questions of
interest, such as for instance what is the probability that the root height of a
tree lies in a given range.

The Bayesian method requires specifying priors, which is a mixed blessing since
it requires extra effort and care, but also allows constraining the analysis when
information of say the substitution rate is available from independent sources
or from the literature. Furthermore, the priors have to be made explicit where
in ML analysis a bias is easily hidden. For example, when a substitution rate is
allowed to uniformly range from zero to one, we implicitly express that we favour
with 99.9% probability that the rate is higher than 0.001, even though we know
that only a few fast evolving viruses have such high rates (Duffy et al. 2008).

Priors can be set using the objective view, which is based on the principle that
priors should be non-informative and only the model and data should influence
the posterior (Berger 2006). Alternatively, subjective Bayesian analysts set priors
so as to contain prior information from previous experience, expert opinions and
information from the literature (Goldstein 2006). This offers the benefit from a
more pragmatic point of view that the Bayesian approach allows us to combine
information from heterogeneous sources into a single analysis based on a formal
foundation in probability theory. For example, integrating DNA sequence data,
information about geographic distribution and data from the fossil record into a
single analysis becomes quite straightforward, as we shall see later in this book.

Another practical consideration is that after setting up priors and data, the
MCMC algorithm in BEAST does not require as much special attention or tun-
ing as most hill climbing or simulated annealing algorithms used in maximum
likelihood. The MCMC algorithm just runs, tunes itself and produces a poste-
rior distribution. The MCMC algorithm is guaranteed to converge in the limit of
the number of samples (Hastings 1970; Metropolis et al. 1953), but in practice it
tends to converge much faster. The algorithm is particularly suited to navigating
the multi-modal and highly peaked probability landscape typical of phylogenetic
problems.

D
RA

FT
14-7

-2
014

2 Evolutionary trees

By Alexei Drummond and Tanja Stadler

2.1 Types of trees

This book is about evolution, and one of the fundamental features of evolutionary
analysis is the tree. The terms tree and phylogeny are used quite loosely in
the literature for the purposes of describing a number of quite distinct objects.
Evolutionary trees are a subset of the group of objects that graph theorists know
as trees, which are themselves connected graphs that do not contain cycles. An
evolutionary tree typically has labelled leaf nodes (tips) and unlabelled internal
nodes (an internal node may also be known as a divergence or coalescence). The
leaf nodes are labelled with taxa, which might represent an individual organism,
or a whole species, or more typically just a gene fragment, while the internal
nodes represent unsampled (and thus inferred) common ancestors of the sampled
taxa. For reasons mainly of history, the types of trees are many and varied and
in the following we introduce the main types.

A

B

C

D

(a)

A

B
C

D

(b)

Figure 2.1 Two leaf-labelled binary trees; (a) is rooted and (b) is unrooted.

D
RA

FT
14-7

-2
014

2.1 Types of trees 21

2.1.1 Rooted and unrooted trees

One of the more important distinctions is between rooted trees and unrooted
trees (Figure 2.1). Both of the trees in Figure 2.1 describe the evolutionary
relationships between four taxa labeled A through D.

A rooted tree has a notion of the direction in which evolution occurred. One
internal node is identified as the root, and evolution proceeds from the root to
the leaves. A tree is said to be binary if its internal nodes always have precisely
two children. A rooted binary tree of n taxa can be described by 2n − 1 nodes
and 2n − 2 branches, each with an associated branch length. A rooted binary
tree is displayed in Figure 2.1a; note that the path length between two leaf nodes
should be measured only by the sum of the lengths of the horizontal lines along
the shortest path connecting the two leaves. The vertical lines exist purely for
the purpose of visual layout. Taxon A is actually the shortest distance of all the
taxa to taxon D, even though taxon A is the furthest from D vertically.

In contrast, an unrooted tree does not have a root and so does not admit any
knowledge of which direction evolution “flows”. The starting point is not known,
so the tree is generally drawn with the leaf nodes spread around the perimeter of
the diagram. We know that the evolutionary process finishes at the leaves, but
we do not know from which point in the tree it starts. An unrooted binary tree
is a tree in which each node has 1 branch (leaf) or 3 branches (internal node)
attached, and can be obtained from a rooted binary tree through replacing the
root node and its two attached branches by a single branch. An unrooted binary
tree of n taxa can be described by 2n−2 nodes and 2n−3 branches with branch
lengths. In the unrooted tree diagram in Figure 2.1b the path length between
two leaf nodes is simply the sum of the branch lengths along the shortest path
connecting the two leaves. This figure makes it more obvious that taxon A is the
closest to taxon D.

There are many different units that the branch lengths of a tree could be
expressed in, but a common unit that is used for trees estimated from molecular
data is substitutions per site. We will expand more on this later in the book
when we examine how one estimates a tree using real molecular sequence data.

2.1.2 Multifurcating trees and polytomies

A polytomy in a rooted tree is an internal node that has more than two children.
Multifurcating trees (as opposed to bifurcating/binary trees) are those that have
one or more polytomies. Polytomies are sometimes used to represent a lack of
knowledge about the true relationships in some part of a tree. In this context the
tree is sometimes called partially-resolved. A fully-resolved tree is a binary tree
by another name. Figure 2.2 illustrates a completely unresolved (star) tree, along
with a partially-resolved (and thus multifurcating) tree and a fully-resolved (and
thus binary or bifurcating) tree.

D
RA

FT
14-7

-2
014

22 Evolutionary trees

A B C D E

(a) a star tree

A B C D E

(b) partially-resolved tree

A B C D E

(c) fully-resolved tree

Figure 2.2 Multifurcating and bifurcating trees.

2.1.3 Time trees

A time-tree is a special form of rooted tree, namely a rooted tree where branch
lengths correspond to calendar time, i.e. the duration between branching events.
A time tree of n taxa can be described by 2n − 2 edges (branches) and 2n − 1
nodes with associated node times (note that assigning 2n−2 branch lengths and
the time of one node is equivalent to assigning 2n − 1 node times). The times
of the internal nodes are called divergence times, ages or coalescent times, while
the times of the leaves are known as sampling times. Figure 2.5 is an example
of a time-tree. Often we are interested in trees in which all taxa are represented
by present-day samples, such that all the sampling times are the same. In this
case it is common for the sampling times to be set to zero, and the divergence
times to be specified as times before present (ages), so that time increases into
the past.

2.1.4 BEAST infers time trees

In unrooted trees, branch lengths typically represent the amount of evolutionary
change, while in rooted trees, branch lengths represent either amount or duration
of evolution (and we call the rooted tree which represents duration of evolution
the time tree). BEAST infers both types of rooted trees. Unrooted trees can be
estimated in programs such as MrBayes (Ronquist and Huelsenbeck 2003) or
PhyloBayes , or BEAST when dropping the root of the tree corresponding to
amount of evolution after the analysis. When inferring rooted trees, we link the
amount and duration of evolution. If amount and duration of evolution is the
same, we assume a strict clock model, however, when there is sufficiently large
variance in the relation between amount and duration of evolution, a relaxed
clock model needs to be considered (see Chapter 4) since it attempts to model
this variance. Since in a time tree node heights correspond to the ages of the
nodes (or at least relative ages if there is no calibration information), such rooted
tree models have fewer parameters than unrooted tree models have, approaching
roughly half for large number of taxa (for n taxa, there are 2n−3 branch lengths
for unrooted trees, while for rooted time trees there are n − 1 node heights for

D
RA

FT
14-7

-2
014

2.2 Counting trees 23

Notation Description

n The number of taxa (and therefore leaf nodes) in the tree
I The set of leaf nodes in a ranked tree. |I| = n
Y The set of internal nodes in a ranked tree. There is a total order

on internal nodes so that x > y for x, y ∈ Y implies that node
x is closer to the root than node y. |Y | = n− 1, I ∩ Y = ∅

V The set of nodes in a ranked tree: |V | = 2n− 1, V = I ∪ Y
〈i, j〉 An ordered edge in a ranked tree such that i is the parent of j:

i > j, i ∈ Y , j ∈ V
R A set of ordered edges 〈i, j〉 representing a ranked tree. |R| =

2n− 2. R ∈ Rn
ti The time of node i, i ∈ V . i > j implies ti > tj .
τi The length of the time interval that a time-tree of contempora-

neous samples has i lineages.
t = {ti : i ∈ V } The set of all node times in a time-tree. |t| = |V |.
g = 〈R, t〉 A time tree consisting of a ranked tree R and associated node

times t.
Rn The set of all ranked trees of size n.
Gn The set of all time trees of size n.
GS The set of time trees with at least one sample, that is, GS =

(G1 ∪ G2 ∪ G3 . . .)

Table 2.1 Notation used for time-trees in all subsequent sections and chapters.

internal nodes and a constant but low number of parameters for the clock model).
As BEAST infers rooted, binary (time) trees we will focus on these objects. If
not specified otherwise, a tree will refer to a rooted binary tree in the following.

2.2 Counting trees

Estimating a tree from molecular data turns out to be a difficult problem. The
difficulty of the problem can be appreciated when one considers how many pos-
sible tree topologies, i.e. trees without branch lengths, there are. Consider Tn,
the set of all tip-labelled rooted binary trees of n taxa. The number of distinct
tip-labelled rooted binary trees |Tn| for n taxa is (Cavalli-Sforza and Edwards
1967):

|Tn| =
n∏
k=2

(2k − 3) = (2n− 3)!
2n−2(n− 2)! . (2.1)

Table 2.2 shows the number of tip-labelled rooted trees up to 10 taxa, and other
related quantities.

D
RA

FT
14-7

-2
014

24 Evolutionary trees

2.2.1 Tree shapes

An unlabeled tree is sometimes known as a tree shape. For three taxa there is
only one rooted binary tree shape: , while for four taxa there are two shapes;
the comb tree, , and the balanced tree, .

In general, the number of tree shapes (or unlabelled rooted tree topologies) of
n taxa (an) is given by (Cavalli-Sforza and Edwards 1967):

an =
{ ∑(n−1)/2

i=1 aian−i n is odd
a1an−1 + a2an−2 + · · ·+ 1

2an/2(an/2 + 1) n is even
(2.2)

This result can easily be obtained by considering that for any tree shape of
size n, it must be composed of two smaller tree shapes of size i and n − i that
are joined by the root to make the larger tree shape. This leads directly to the
simple recursion above. So for five taxa, the two branches descending from the
root can split the taxa into subtrees of size (1 and 4) or (2 and 3). There are
a1a4 = 2 tree shapes of the first kind and a2a3 = 1 tree shape of the second
kind, giving a5 = a1a4 + a2a3 = 3. This result can be built upon to obtain a6
and so on.

2.2.2 Ranked trees

A ranked tree is a rooted binary tree topology, where in addition the order of the
internal nodes is given. There are more ranked trees than rooted tree topologies,
and they are important because many natural tree priors are uniform on ranked
trees rather than tree shapes. The number of ranked trees of n contemporaneous
taxa, F (n) = |Rn|, is:

F (n) = |Rn| =
n∏
k=2

(
k

2

)
= n!(n− 1)!

2n−1 (2.3)

All ranked trees with four tips are shown in Figure 2.3. When a tree has
non-contemporaneous times for the sampled taxa we term the tree fully ranked
(Gavryushkina et al. 2013) and the number of fully ranked trees of n tips can be
computed by recursion:

F (n1, . . . , nm) =
nm∑
i=1

|Rnm |
|Ri|

F (n1, n2, . . . nm−2, nm−1 + i), (2.4)

where ni is the number of tips in the i’th set of tips, grouped by sample time
(see (Gavryushkina et al. 2013) for details).

Let Fn be the set of fully ranked trees on n tips each with a distinct sampling
time, then:

D
RA

FT
14-7

-2
014

2.3 The coalescent 25

n #shapes #trees, |Tn| #ranked trees, |Rn| #fully ranked trees, |Fn|

2 1 1 1 1
3 1 3 3 4
4 2 15 18 34
5 3 105 180 496
6 6 945 2700 11056
7 11 10395 56700 349504
8 23 135135 1587600 14873104
9 46 2027025 57153600 819786496
10 98 34459425 2571912000 56814228736

Table 2.2 The number of unlabeled rooted tree shapes, the number of labelled rooted
trees, the number of labelled ranked trees (on contemporaneous tips), and the number of
fully-ranked trees (on distinctly-timed tips) as a function of the number of taxa, n.

|Fn| = F (
n times︷ ︸︸ ︷

1, 1, · · · , 1).

Table 2.2 shows how |Fn| grows with n.

2.2.3 Time-trees

Consider, Gn, the (infinite) set of time-trees of size n. Gn can be constructed by
the Cartesian product of (i) the set of ranked trees Rn and (ii) D the set of
ordered divergence sampling times, t = {t1 = 0, t2, . . . , t2n−1}, tk ≥ tk−1, t ∈ D
(with time increasing into the past):

Gn = Rn ×D = {(R, t)|R ∈ Rn, t ∈ D}

In the remainder of this sections, we discuss models giving rise to time trees
(and thus also to ranked trees and tree shapes).

2.3 The coalescent

Much of theoretical population genetics is based on the idealized Wright-Fisher
model which gives rise, as we explain below, to a distribution of time trees
for large population sizes N , which is the coalescent tree distribution (see for
example Hein et al. (2004) for a primer on coalescent theory).

The Wright-Fisher model in its simplest form assumes (i) Constant population
size N , (ii) Discrete generations, (iii) Complete mixing.

Now consider two random members of the current generation from a popula-
tion of fixed size N (refer to Figure 2.4). By complete mixing, the probability
they share a concestor (common ancestor) in the previous generation is 1/N . It

D
RA

FT
14-7

-2
014

26 Evolutionary trees

t4

t5

t6

t7

A B C D A B C D A B D C

A B C D C D A B C D B A

A C B D A C B D A C D B

A C B D B D A C B D C A

A D B C A D B C A D C B

A D B C B C A D B C D A

Figure 2.3 All ranked trees of size 4.

D
RA

FT
14-7

-2
014

2.3 The coalescent 27

Figure 2.4 A haploid Wright-Fisher population of a dozen individuals with the
ancestry of two individuals sampled from the current generation traced back in time.
Going back in time, the traced lineages coalesce on a common ancestor 11 generations
in the past, and from there on the ancestry is shared.

can easily be shown by a recursive argument that the probability the concestor
is t generations back is

Pr{t} = 1
N

(1− 1
N

)t−1.

It follows that X = t − 1, has a geometric distribution with a success rate of
λ = 1/N , and so has mean N and variance of N2 −N ≈ N2.

With k lineages the time to the first coalescence can be derived in the same way.
The probability that none of the k lineages coalesces in the previous generation
is

(
N − 1
N

)(
N − 2
N

)
. . .

(
N − k + 1

N

)
= 1−

(
k
2
)

N
+O(1/N2).

Thus the probability of a coalescent event is
(
k
2
)
/N +O(1/N2). Now for large

N we can drop the order O(N−2) term, and this results in a success rate of
λ =

(
k
2
)
/N and the mean waiting time to the first coalescence among k lineages

(τk) of

D
RA

FT
14-7

-2
014

28 Evolutionary trees

E(τk) = N(
k
2
) .

Dropping O(N−2) implicitly assumes that N is much larger than k such that
two coalescent events occurring in the same generation is negligible.

Kingman (1982) showed that as N grows the coalescent process converges to
a continuous-time Markov chain. The rate of coalescence in the Markov chain is
λ =

(
k
2
)
/N , i.e. going back in time, the probability of a pair coalescing from k

lineages on a short time interval ∆t is O(λ∆t). Unsurprisingly the solution turns
out to be the exponential distribution:

f(τk) =
(
k
2
)

N
exp

(
−
(
k
2
)
τk

N

)
.

Applied to a sample genealogy, Kingman’s coalescent (Kingman 1982) de-
scribes the distribution of coalescent times in the genealogy as a function of the
size of the population from which it was drawn, assuming an idealized Wright-
Fisher population (Fisher 1930; Wright 1931). The coalescent can also be ob-
tained by taking the limit in large N from the continuous-time finite population
Moran model (Moran 1958; Moran et al. 1962).

In practice the idealised assumptions underlying the coalescent are often not
met perfectly in real data. Common features of real populations that aren’t
explicitly taken into account in the idealised formulation of coalescent theory
include variation in reproductive success, population age structure and unequal
sex ratios (Wright 1931). These extra complexities mean that the estimated
population size parameter is almost always smaller than the actual census size
of a population (Wright 1931). It is therefore common to term the parameter
estimated using coalescent theory the effective population size and denote it Ne.
One way to interpret coalescent Ne is to say that the natural population exhibits
sample genealogies that have the statistical properties of an idealised population
of size Ne. Although this means that the absolute values of Ne are difficult to
relate to the true census size, it allows different populations to be compared on
a common scale (Sjödin et al. 2005). Theoretical extensions to the concept of
coalescent effective population size have also received recent attention (Wakeley
and Sargsyan 2009) and the complexities of interpreting effective population size
in the context of HIV-1 evolution has received much consideration (Kouyos et
al. 2006). But see Gillespie (2001) for an argument that these neutral evolution
models are irrelevant to much real data because neutral loci will frequently be
sufficiently close to loci under selection, that genetic draft and genetic hitchhiking
will destroy the relationship between population size and genetic diversity that
coalescent theory relies on for its inferential power.

The original formulation was for a constant population (as outlined above),
but the theory has been generalized in a number of ways (see (Hudson 1990) for a

D
RA

FT
14-7

-2
014

2.3 The coalescent 29

classic review), including its application to recombination (Hudson 1987; Hudson
and Kaplan 1985), island migration models (Hudson 1990; Slatkin 1991; Tajima
1989), population divergence (Tajima 1983; Takahata 1989) and deterministi-
cally varying functions of population size for which the integral

∫ t1
t0
N(t)−1dt

can be computed (Griffiths and Tavaré 1994). Since all but the final extension
requires more complex combinatorial objects than time-trees (either ancestral
recombination graphs or structured time-trees in which tips and internal branch
segments are discriminated by their subpopulation), we will largely restrict our-
selves to single population non-recombining coalescent models in the following
sections. For information about structured time-tree models see Chapter 5.

2.3.1 Coalescent with changing population size in a well-mixed population

Parametric models with a pre-defined population function, such as exponential
growth, expansion model and logistic growth models can easily be used in a
coalescent framework. The logistic population model was one of the first non-
trivial population models employed in a coalescent framework (Pybus et al. 2001)
and analytic solutions for the coalescent likelihood for a number of parametric
models were implemented in the package GENIE (Pybus and Rambaut 2002).
Fully Bayesian inference under these models followed soon after. For example
a “piecewise-logistic” population model was employed in a Bayesian coalescent
framework to estimate the population history of hepatitis-C virus (HCV) geno-
type 4a infections in Egypt (Pybus et al. 2003). This analysis demonstrated a
rapid expansion of HCV in Egypt between 1930-1955, consistent with the hypoth-
esis that public health campaigns to administer anti-schistosomiasis injections
had caused the expansion of an HCV epidemic in Egypt through usage of HCV
contaminated needles.

The integration of likelihood-based phylogenetic methods and population ge-
netics through the coalescent has provided fertile ground for new developments.
Many coalescent-based estimation methods focus on a single genealogy (Felsen-
stein 1992; Fu 1994; Nee et al. 1995; Pybus et al. 2000) that is typically obtained
using standard phylogenetic reconstruction methods. For example a maximum
likelihood tree (under clock constraints) can be obtained and then used to obtain
a maximum likelihood estimate of the mutation-scaled effective population size
Neµ (where µ is mutation rate per generation time) using coalescent theory. If
the mutation rate per generation is known then Ne can be estimated directly
from a time-tree in which the time is expressed in generations, otherwise if the
mutation rate is known in some calendar units, µc, then the estimated popula-
tion size parameter will be Negc where µ = µcgc and thus gc is the generation
time in calendar units.

Consider a demographic function Ne(x) and an ordered set of node times
t = {ti : i ∈ V }. Let ki denote the number of lineages co-existing in the time
interval (ti−1, ti) between node i−1 and node i. Note that for a contemporaneous
tree, ki decreases monotonically with increasing i.

D
RA

FT
14-7

-2
014

30 Evolutionary trees

t7 = 0t8t9t10t11t12t13

1

2

3

4

5

6

7

8

9

10

11

12

13

Figure 2.5 A coalescent tree of seven taxa. Y = {8, 9, . . . , 13}

The probability those times are the result of the coalescent process reducing
n lineages into 1 is obtained by multiplying the (independent) probabilities for
each coalescence event,

f(t|Ne(x)) =
∏
i∈Y

(
ki
2
)

Ne(ti)
∏
i∈V

exp

− ti∫
ti−1

(
ki
2
)

Ne(x) dx

, (2.5)

where t0 = 0 is defined to effect compact notation in the second product. Note
that the second product is over all nodes (including leaf nodes) to provide for
generality of the result when leaf nodes are non-contemporaneous (i.e. dated
tips).

For a time-tree g = 〈R, t〉 with contemporaneous tips, composed of a ranked
tree topology R ∈ Rn and coalescent times t, the probability density becomes:

f(g|Ne(x)) = 1
|Rn|

f(t|Ne(x)),

since there are |Rn| ranked trees of equal probability under the coalescent pro-
cess (Aldous 2001). Note that this second result only holds for contemporaneous
tips, as not all ranked trees are equally probable under the coalescent when tips
are non-contemporaneous (see Section 2.3.2 for non-contemporaneous tips). The

D
RA

FT
14-7

-2
014

2.3 The coalescent 31

function Ne(x) that maximizes the likelihood of the time-tree g is the maxi-
mum likelihood estimate of the population size history. For the simplest case
of constant population size Ne(x) = Ne and contemporaneous tips, this density
becomes:

f(g|Ne) =
∏
i∈Y

1
Ne

exp
(
−
(
ki
2
)
τi

Ne

)
.

Note above that we use Ne understanding that the times, τi, are measured in
generations. If they are measured in calendar units then Ne would be replaced by
Negc where gc is the generation time in the calendar units employed.

Furthermore, there is often considerable uncertainty in the reconstructed ge-
nealogy. In order to allow for this uncertainty it is necessary to compute the aver-
age probability of the population parameters of interest. The calculation involves
integrating over genealogies distributed according to the coalescent (Felsenstein
1988, 1992; Griffiths 1989; Griffiths and Tavaré 1994; Kuhner et al. 1995). Inte-
gration for some models of interest can be carried out using Monte Carlo meth-
ods. Importance-sampling algorithms have been developed to estimate the pop-
ulation parameter Θ ∝ Neµ (Griffiths and Tavaré 1994; Stephens and Donnelly
2000), migration rates (Bahlo and Griffiths 2000) and recombination (Fearnhead
and Donnelly 2001; Griffiths and Marjoram 1996). Metropolis-Hastings Markov
chain Monte Carlo (MCMC) (Hastings 1970; Metropolis et al. 1953) has been
used to obtain sample-based estimates of Θ (Kuhner et al. 1995), exponential
growth rate (Kuhner et al. 1998), migration rates (Beerli and Felsenstein 1999;
Beerli and Felsenstein 2001) and recombination rate (Kuhner et al. 2000).

In addition to developments in coalescent-based population genetic inference,
sequence data sampled at different times are now available from both rapidly
evolving viruses such as HIV-1 (Holmes et al. 1993; Rodrigo et al. 1999; Shankarappa
et al. 1999; Wolinsky et al. 1996), and from ancient DNA sources (Barnes et al.
2002; Lambert et al. 2002; Leonard et al. 2002; Loreille et al. 2001). Temporally
spaced data provides the potential to observe the accumulation of mutations
over time, thus allowing the estimation of mutation rate (Drummond and Ro-
drigo 2000; Rambaut 2000). In fact it is even possible to estimate variation in
the mutation rate over time (Drummond et al. 2001). This leads naturally to
the more general problem of simultaneous estimation of population parameters
and mutation parameters from temporally spaced sequence data (Drummond
and Rodrigo 2000; Drummond et al. 2001, 2002; Rodrigo and Felsenstein 1999;
Rodrigo et al. 1999).

Non-parametric coalescent methods
A number of non-parametric coalescent methods have been developed to in-
fer population size history from DNA sequences without resorting to simple
parametric models of population size history. The main differences among these
methods are (i) how the population size function is segmented along the tree,

D
RA

FT
14-7

-2
014

32 Evolutionary trees

(ii) the statistical estimation technique employed and (iii) in Bayesian methods,
the form of the prior density on the parameters governing the population size
function. In the ‘classic skyline plot’ (Pybus et al. 2000) each coalescent interval
is treated as a separate segment, so a tree of n taxa has n − 1 population size
parameters. However, the true number of population size changes is likely to be
substantially fewer, and the generalized skyline plot (Strimmer and Pybus 2001)
acknowledges this by grouping the intervals according to the small-sample Akaike
information criterion (AICc) (Burnham and Anderson 2002). The epidemic his-
tory of HIV-2 was investigated using the generalized skyline plot (Strimmer and
Pybus 2001), indicating the population size was relatively constant in the early
history of HIV-2 subtype A in Guinea-Bissau, before expanding more recently
(Lemey et al. 2003). Using this information, the authors then employed a piece-
wise expansion growth model, to estimate the time of expansion to a range of
1955-1970.

While the generalized skyline plot is a good tool for data exploration, and to
assist in model selection (for examples see: Lemey et al. 2004; Pybus et al. 2003),
it infers demographic history based on a single input tree and therefore does not
account for sampling error produced by phylogenetic reconstruction nor for the
intrinsic stochasticity of the coalescent process. This shortcoming is overcome
by implementing the skyline plot method in a Bayesian statistical framework,
which simultaneously infers the sample genealogy, the substitution parameters
and the population size history. Further extensions of the generalized skyline
plot include modeling the population size by a piecewise-linear function instead
of a piecewise-constant population, allowing continuous changes over time rather
than sudden jumps. The Bayesian skyline plot (Drummond et al. 2005) has been
used to suggest that the effective population size of HIV-1 group M may have
grown at a relatively slower rate in the first half of the twentieth century, followed
by much faster growth (Worobey et al. 2008). On a much shorter time scale, the
Bayesian skyline plot analysis of a dataset collected from a pair of HIV-1 donor
and recipient was used to reveal a substantial loss of genetic diversity following
virus transmission (Edwards et al. 2006). A further parametric analysis assuming
constant population size in the donor and logistic growth model in the recipient
estimated that more than 99% of the genetic diversity of HIV-1 present in the
donor is lost during horizontal transmission. This has important implications as
the process underlying the bottleneck determines the viral fitness in the recipient
host.

One disadvantage of the Bayesian skyline plot is that the number of changes
in the population size has to be specified by the user a priori and the appropri-
ate number is seldom known. A solution is provided by methods that perform
Bayesian model averaging on the demographic model utilizing either Reversible
jump MCMC (Opgen-Rhein et al. 2005) or Bayesian variable selection (Heled and
Drummond 2008), and in which case the number of population size changes is a
random variable estimated as part of the model. Development of nonparametric
modeling approaches to the coalescent are ongoing (Gill et al. 2013; Minin et al.

D
RA

FT
14-7

-2
014

2.3 The coalescent 33

0

τ

A B

C D

(a)

0

τ

A B

C D

(b)

Figure 2.6 (a) Only three ranked trees are possible if coalescence of A and B occurs
more recently than τ . (b) All ranked topologies are possible if A and B do not
coalesce more recently than τ .

2008; Palacios and Minin 2012, 2013), indicating both the demand for meth-
ods to estimate past population sizes and the technical challenge of producing
a nonparametric estimator of an inhomogeneous point process that is free of
unattractive statistical properties.

The methods for demographic inference discussed so far assume no subdivision
within the population of interest. Like changes in the size, population structure
can also have an effect on the pattern of the coalescent interval sizes, and thus the
reliability of results can be questioned when population structure exists (Pybus et
al. 2009). Models of trees with population structure will be discussed in Chapter
5.

2.3.2 Serially sampled coalescent

The serial sample coalescent was introduced by Rodrigo and Felsenstein (1999)
and a full Bayesian inference approach to estimating gene trees under the serial
sample coalescent was described a few years later (Drummond et al. 2002).

In order to illustrate some of the complexities that occur when introducing
non-contemporaneous sequences (i.e. dated tips) we will briefly consider the
implications of such sampling to the probability distribution over ranked trees
under the constant-size coalescent in a simple example. Recall that for contem-
poraneous sampling a uniform distribution on ranked trees was induced. For
non-contemporaneous sampling this is not the case. Consider the situation in
which there are 4 haploid individuals sampled, two in the present (A, B) and
two sampled τ time units in the past, as illustrated in Figure 2.6. The probability
that there is no coalescent between A and B closer to the present than τ is:

pnc = e−τ/Ne ,

where Ne is the effective population size. Consequently the probability of coa-
lescence is:

pc = 1− pnc.

D
RA

FT
14-7

-2
014

34 Evolutionary trees

If there is a coalescence more recent than time τ then the tree must be one of
the following topologies: ((A,B),(C,D)), (((A,B),C),D), (((A,B),D),C).

Now consider the topology ((A,B),(C,D)). Conditional on coalescence of (A,B)
more recent than τ it has a probability of 1

3 . However if there is no coalescence
more recently than τ it has it’s “normal” coalescent probability of 1

9 (being a
symmetrical tree shape). This gives a total probability for this tree shape of:

p((A,B),(C,D)) = pc
3 + pnc

9
Likewise the probability of topologies (((A,B),C),D) and (((A,B),D),C) can be
calculated as:

p(((A,B),C),D) = p(((A,B),D),C) = pc
3 + pnc

18
The probability of the two remaining symmetrical trees are:

p((A,C),(B,D)) = p((A,D),(B,C)) = pnc
9 ,

and the probability of each of the remaining asymmetric trees is pnc
18 .

Taking τ/Ne = 0.5 then pnc = 0.607 and pc = 0.393 gives tree probabilities of:

p((A,B),(C,D)) ≈ 0.199
p(((A,B),C),D) ≈ 0.165
p(((A,B),D),C) ≈ 0.165
p((A,C),(B,D)) ≈ 0.0674
p((A,D),(B,C)) ≈ 0.0674
p(((C,D),B),A) ≈ 0.0337

. . .

which is clearly not uniform on ranked topologies. Drummond et al. (2002)
describes a method to jointly estimate mutation rate and population size that
incorporates the uncertainty in the genealogy of temporally spaced sequences by
using MCMC integration.

2.3.3 Modeling epidemic dynamics using coalescent theory

Models that describe epidemic disease progression compartmentalise host indi-
viduals into different states. Individuals within each compartment are deemed
to be dynamically equivalent. The specific division of the host population de-
pends on the life cycle of the infectious agent in question, spanning a range of
scenarios where hosts may or may not be reinfected, possess more than one
infection rate, exhibit a period of exposure (incubation period) between be-
coming infected and becoming infectious, and so forth. Such examples cover

D
RA

FT
14-7

-2
014

2.3 The coalescent 35

the well-known SI (Susceptible-Infected), SIS (Susceptible-Infected-Susceptible),
SIR (Susceptible-Infected-Removed), and SEIR (Susceptible-Exposed-Infected-
Removed) paradigms (Anderson and May 1991; Keeling and Rohani 2008).

Currently, the probabilities of phylogenetic trees can only be solved analyt-
ically for small host population sizes in the simplest endemic setting (SI and
SIS) (Leventhal et al. 2013). The SIR model is the simplest that exhibits epi-
demic dynamics (as opposed to endemic dynamics), by including a third class
of “Removed” individuals who are removed from the infected population by way
of acquired immunity, death, or some other inability to infect others or to be
reinfected. The number of susceptible, infected and removed individuals under
an SIR model can be deterministically described forward in time by a trio of
coupled ODEs, where β and µ respectively represent the transition rates from
susceptible S to infected I, and infected I to removed R, such that

d

dτ
S(τ) = −βI(τ)S(τ), (2.6)

d

dτ
I(τ) = βI(τ)S(τ)− µI(τ), (2.7)

d

dτ
R(τ) = µI(τ). (2.8)

Considering this model in the reverse time direction, we have S(t) = S(z0− t),
I(t) = I(z0 − t), R(t) = R(z0 − t), from an origin z0 ago.

Recall that the coalescent calculates the probability density of a tree given
the coalescent rate. The coalescent rate for k lineages is

(
k
2
)

times the inverse of
the product of effective population size Ne and generation time gc. Volz (2012)
proposed a coalescent approximation to epidemiological models such as the SIR,
where the effective population size Ne is the expected number of infected indi-
viduals through time, and the generation time gc is derived as follows.

We summarize the epidemiological parameters η = {β, µ, S0, z0} with the start
of the epidemic being at time z0 in the past and S0 being the susceptible popu-
lation size at time z0. The expected epidemic trajectory obtained from Equation
2.6-2.8 is denoted V = (S, I,R). Let f(g|V, η) be the probability density of a
tree given the expected trajectory and the epidemic parameters η. The coalescent
rate λk(t) of k co-existing lineages computed following Volz (2012) is:

λk(t) = (Prob. of coalescence given single birth in population)× (total birth rate)

=
(
k

2

)(
I(t)

2

)−1
× βS(t)I(t)

≈
(
k

2

)
2βS(t)
I(t) , (2.9)

Note that ‘birth’ in this context refers to an increase in the number of infected

D
RA

FT
14-7

-2
014

36 Evolutionary trees

hosts by the infection process. In the last line, the approximation I(t) ≈ I(t)−1
is used, following (Volz 2012).

In summary, the relationship between the estimators of Negc(t), such as the
Bayesian skyline plot, and the coalescent model approximating the SIR dynamics
described by Volz (2012), is:(

k

2

)
1

Ne(t)gc(t)
= λk(t) ≈

(
k

2

)
2βS(t)
I(t) , (2.10)

where Ne(t) = I(t) is a deterministically varying population size, and gc(t) ≈
1

2βS(t) is a deterministically varying generation time that results from the slow
down in infection rate per lineage as the susceptible pool is used up.

The probability density of coalescent intervals t given an epidemic description
can then be easily computed, following Equation 2.5 and using calendar time
units:

f(t|V, η) =
∏
i∈Y

λki(ti)
∏
i∈V

exp

− ti∫
ti−1

λki(x)dx

 . (2.11)

2.4 Birth-death models

The coalescent can be derived by considering the data set to be a small sample
from an idealized Wright-Fisher population. Coalescent times only depend on
deterministic population size, meaning population size is the only parameter in
the coalescent.

If the assumption of small sample size or deterministic population size breaks
down or parameters other than population size may govern the distribution of
time-trees, then different models need to be considered. Classically, forward in
time birth-death processes (Kendall 1948) are used as alternatives to the coales-
cent. We will first discuss birth-death processes with constant rates and samples
taken at one point in time, which includes the Yule model (Harding 1971; Yule
1924). This model is then generalized to allow for changing rates, and finally
sequential sampling is considered.

2.4.1 Constant rate birth-death models

The continuous-time constant rate birth-death process is a birth-death process
which starts with one lineage at time z0 in the past and continues forward in time
with a stochastic rate of birth (λ) and a stochastic rate of death (µ) until the
present (time 0). At present, each extant lineage is sampled with probability ρ.
The process generates a tree with extinct and extant lineages which we denote as
“complete tree”. Typically the extinct and the non-sampled lineages are deleted

D
RA

FT
14-7

-2
014

2.4 Birth-death models 37

producing a “reconstructed tree” on only sampled extant lineages, see Figure
2.7.

0 = t1 = · · · = t5

t6

t7

t8

t9

z0

Figure 2.7 Complete tree of age z0 (left) and corresponding reconstructed tree (right).
In the reconstructed phylogeny, all extinct and non-sampled extant species are
pruned, only the sampled species (denoted with a black circle) are included.

This reconstructed tree, a time-tree g produced after time z0, may have any
number n of tips (n = 0, 1, 2 . . .), i.e. g ∈ G where G = G0 ∪ G1 ∪ G2 In order
to investigate a particular time-tree under the constant rate birth-death model
we need to compute the probability density of the time-tree g ∈ G given a birth
rate λ, a death rate µ, a sampling probability ρ and a time of origin z0 (Stadler
2010):

fBD(g|λ, µ, ρ, z0) = p1(z0)
n−1∏
i=1

λp1(tn+i)

with

p1(x) = ρ(λ− µ)2e−(λ−µ)x

(ρλ+ (λ(1− ρ)− µ)e−(λ−µ)x)2 ,

where p1(x) is the probability of an individual at time x in the past having
precisely one sampled descendant.

When assuming additionally a probability density f(z0) for z0, we obtain the
probability density density of the time-tree g ∈ G together with its time of origin
z0, given a birth rate λ, a death rate µ and a sampling probability ρ:

fBD(g, z0|λ, µ, ρ) = fBD(g|λ, µ, ρ, z0)f(z0).

We made the assumption here that the distribution of z0 is independent of λ, µ, ρ,
i.e. f(z0|λ, µ, ρ) ≡ f(z0), following the usual assumption of independence of
hyper-prior distributions.

For obtaining non-biased estimates, we suggest to condition the process on
yielding at least one sample (i.e. g ∈ GS with GS = G1 ∪ G2 ∪ G3 . . .), as we
only consider datasets which contain at least one sample (Stadler 2013b). We
obtain such a conditioning through dividing fBD(g, z0|λ, µ, ρ) by the probability

D
RA

FT
14-7

-2
014

38 Evolutionary trees

of obtaining at least one sample. We define p0(x) to be the probability of an
individual at time x in the past not having any sampled descendants, and thus
1− p0(x) is the probability of at least one sample (Yang and Rannala 1997),

1− p0(x) = ρ(λ− µ)
ρλ+ (λ(1− ρ)− µ)e−(λ−µ)x .

The probability density of the time-tree g ∈ G together with its time of origin z0,
given a birth rate λ, a death rate µ, a sampling probability ρ, and conditioned
on at least one sample (S) is:

fBD(g, z0|λ, µ, ρ;S) = f(z0) p1(z0)
1− p0(z0)

n−1∏
i=1

λp1(tn+i). (2.12)

Equation (2.12) defines the probability density of the time-tree g ∈ GS . Thus
when performing parameter inference, the number of samples, n, is considered
as part of the data. In contrast, under the coalescent, the probability density
of the time-tree g ∈ Gn is calculated (Equation 2.5). Thus, parameter inference
is conditioned on the number of samples, n, which means that we do not use
the information n for inference and thus ignore some information in the data by
conditioning on it.

In order to compare the constant rate birth-death process to the coalescent, we
may want to condition on observing n tips. Such trees correspond to simulations
where first a time z0 is sampled, and then a tree with age z0 is being simulated
but only kept if the final number of tips is n. The probability density of the
time-tree g ∈ Gn together with its time of origin z0, given λ, µ and ρ, is (Stadler
2013b):

fBD(g, z0|λ, µ, ρ;n) = fBD(g|λ, µ, ρ, z0;n)f(z0;n), (2.13)

with

fBD(g|λ, µ, ρ, z0;n) =
n−1∏
i=1

λ
p1(ti)
q(z0) ,

where

q(z0) = ρλ(1− e−(λ−µ)z0)/(λρ+ (λ(1− ρ)− µ)e−(λ−µ)z0).

Note that when we condition on n (instead of considering it as part of the
data), the distribution for z0 as well as all other hyper-prior distributions are
formally chosen with knowledge of n.

We conclude the section on the constant rate birth-death model with several
remarks: The constant rate birth-death model with µ = 0 and ρ = 1, i.e. no
extinction and complete sampling, corresponds to the well-known Yule model
(Edwards 1970; Yule 1924).

The three parameters λ, µ, ρ are non-identifiable, meaning that the probability
density of a time-tree is determined by the two parameters λ − µ and λρ (the

D
RA

FT
14-7

-2
014

2.4 Birth-death models 39

probability density only depends on these two parameters if the probability den-
sity is conditioned on survival or on n samples (Stadler 2009)). Thus, if the priors
for all three parameters are non-informative, we obtain large credible intervals
when estimating these parameters.

One may speculate that the distribution of g ∈ Gn under the constant rate
birth-death process (Equation 2.13) for ρ → 0 converges to the distribution of
g ∈ Gn under the coalescent (Equation 2.5). However, this is only true in expec-
tation under special assumptions (Gernhard 2008; Stadler 2009). One difference
between the constant rate birth-death process limit and the coalescent is that
the birth-death process induces a stochastically varying population size while
the coalescent assumes a deterministic population size. It remains unsolved if
a coalescent with a stochastically varying population size is equivalent to the
constant rate birth-death limit.

2.4.2 Time-dependent birth-death models

Recently, the assumptions of the constant rate birth-death model have been re-
laxed, allowing for birth- and death-rates to change through time, which is an
analogue to the coalescent with a population size changing through time, see
Equation (2.5). Morlon et al. (2011) (Equation 1) derived a general expression
for the probability density of the time-tree g ∈ G when λ(x) and µ(x) are birth
and death rates changing as a function of time x, fBD(g|λ(x), µ(x), ρ, z0;S).
Note that an equivalent expression for trees starting with the first split (rather
than at time z0) has been derived in (Nee et al. 1994b), Equation 20. For gen-
eral λ(x) and µ(x), the equation for fBD(g|λ(x), µ(x), ρ, z0;S) contains integrals
over time which need to be evaluated numerically. The time-dependent macro-
evolutionary model allows for example to reconcile the molecular phylogeny of
cetaceans (whales, dolphins, and porpoises) with the fossil record (Morlon et al.
2011).

The integrals can be solved analytically assuming piecewise constant rates
which change at time points x− = (x1, x2, . . . , xm) where xi > xi+1, x0 := z0
and xm+1 := 0. The birth (resp. death) rate in (xi, xi+1) is λi (resp. µi). We write
λ− = (λ0, λ1, . . . , λm) and µ− = (µ0, µ1, . . . , µm). Theorem 2.6 in (Stadler 2011)
provides an analytic expression for fBD(g|λ−, µ−, ρ, x−, z0), which needs to be
divided by (1− p0(z0)) (with p0(z0) being provided in (Stadler 2011), Equation
1), in order to obtain fBD(g|λ−, µ−, ρ, x−, z0;S). This piecewise constant birth-
death process is analogue to the coalescent skyline plot where the population
size is piecewise constant, thus we call this model the birth-death skyline plot.
The birth-death skyline plot has been used for example to reject the hypothesis
of increased mammalian diversification following the K/T boundary (Meredith
et al. 2011; Stadler 2011).

D
RA

FT
14-7

-2
014

40 Evolutionary trees

General birth-death models
So far we considered constant or time-dependent birth- and death-rates. Further
extensions of the constant rate birth-death model have been developed, for ex-
ample assuming that the birth- and death-rates are dependent on the number
of existing lineages (diversity-dependent diversification, Etienne et al. 2012; Ra-
bosky 2007) or assuming that the birth- and death-rates are dependent on the
trait of a lineage (trait-dependent diversification, FitzJohn et al. 2009; FitzJohn
2010; Maddison 2007)).

Aldous (2001) showed that for all birth-death processes under which individ-
uals are exchangeable (meaning if a birth, death or sampling event happens,
each species is equally likely to be the one undergoing this event), then for a
vector tn+1, . . . , t2n−1 of branching times together with tree age z0, each ranked
tree is equally likely, meaning we can consider the discrete ranked tree inde-
pendent of the continuous branching time vector. Stadler (2013a) generalized
this results to processes which are species-speciation-exchangeable. Recall that
the same conclusion was drawn under the coalescent, and that the ranked tree
together with the branching times define the time-tree. Out of all birth-death
models mentioned above only the trait-dependent model does not satisfy the
species-speciation-exchangeable assumption.

2.4.3 Serially sampled birth-death models

Since in the previous section we only defined a sampling probability ρ at present,
the birth-death model did only give rise to time-trees with contemporaneous tips.
Stadler (2010) extended the constant rate birth-death model to account for serial
sampling by assuming a sampling rate ψ. This means that each lineage is sampled
with a rate ψ and it is assumed that the lineage goes extinct after being sampled.

For constant λ, µ, ρ, ψ the probability density of the time-tree g ∈ G,

fBD(g|λ, µ, ρ, ψ, z0;S),

is given in (Stadler 2010), Corollary 3.7. This model was used to quantify the
basic reproductive number for HIV in Switzerland (Stadler et al. 2012).

We note that if µ = 0, we obtain time-trees with all extinct lineages being
included. If ρ = 0, then it is straightforward to show that the probability density
of a time-tree only depends on two parameters λ−µ−ψ and λψ, if conditioned
on survival (Stadler 2010).

Again, the model can be extended to piecewise changing rates (birth-death
skyline plot), and the probability density of the time-tree g ∈ G,

fBD(g|λ−, µ−, ρ−, ψ−, x−, z0;S),

is given in (Stadler et al. 2013), Theorem 1. The birth-death skyline plot was
used to recover epidemiological dynamics of HIV in the UK and HCV in Egypt.

Recall that when analysing serially sampled data using the coalescent, we

D
RA

FT
14-7

-2
014

2.5 Trees within trees 41

condition the analysis on the number of samples n as well as on the sampling
times. The birth-death model however treats n and the sampling times as part
of the data, and thus the parameters are informed by the sampling times of the
particular datasets.

Recent work started incorporating diversity-dependent models (Kühnert et al.
2014; Leventhal et al. 2013) and trait-dependent models (Stadler and Bonhoeffer
2013) for serially sampled data. Diversity-dependent models can be used to ex-
plicitly model epidemiological dynamics in infectious diseases by acknowledging
the dependence of transmission rates on the number of susceptible individuals,
formalized in SI, SIS, SIR or SEIR models described in Section 2.3.3. In such
models, the birth rate of the birth-death model is λ = βS with β being the
transition rate from susceptible to infected and S being the number of suscep-
tibles. Trait-dependent models may be used for structured populations, where
different population groups are characterized by a trait. Chapter 5 discusses such
phylodynamic models in detail.

2.5 Trees within trees

2.5.1 The multispecies coalescent

So far we assumed that the genealogy equals the species or transmission tree.
However this is an approximation. The genealogy is actually embedded within
the species / transmission tree.

The multispecies coalescent brings together coalescent and birth-death models
of time-trees into a single model. It describes the probability distribution of one
or more gene trees that are nested inside a species tree. The species tree describes
the relationship between the sampled species, or sometimes, sampled populations
that have been separated for long periods of time relative to their population
sizes. In the latter case it may be referred to as a population tree instead. The
multispecies coalescent model can be used to estimate the species time-tree gS ,
together with ancestral population sizes N, given the sequence data from multiple
genes, whose gene trees may differ due to incomplete lineage sorting (Pamilo and
Nei 1988).

The probability of a gene tree with respect to a species tree S, using notation
in Table 2.3, is:

f(g|S) =
2nS−1∏
i=1

f(Li,S(g)|Ni(t)). (2.14)

Figure 2.8 shows a gene tree of n = 10 taxa samples from nS = 3 species.
The joint probability distribution of the species tree and the gene tree can be

written:

D
RA

FT
14-7

-2
014

42 Evolutionary trees

T
im

e

Population size, N

t4

t5

5

4

1 2

3

Coalescent intervals in species 4

N4(t4)

N4(t5)

T
im

e

Population size, N

Figure 2.8 A species tree on nS = 3 species with a gene tree of n = (3, 4, 3) samples
embedded.

Notation Description

nS The number of species in a species tree.
ti The speciation time i in the species tree.
gS The time tree representing the species tree topology and speci-

ation times.
N = {N1(t), N2(t), · · · , N2nS−1(t)}, a set of population size func-

tions. Ni(t) is the population size at time t in the i’th branch of
the species tree.

S = 〈gS ,N〉 The species (or population) tree, made up of a time tree gS and a
set of population size functions, N (one population size function
for each branch in the time tree, including the root branch).

Li,S(g) The set of gene tree coalescent intervals for genealogy g that are
contained in the i’th branch of species tree S.

Table 2.3 Notation for multispecies coalescent.

f(g, S) =f(g|S)f(S)
=f(g|gS ,N)f(gS)f(N),

(2.15)

where f(gS) is typically a Yule or birth-death prior on the species time-tree
and f(N) is a prior on the population size functions. For information on prior
formulations for population sizes and Bayesian inference under this model, see
Section 8.3.

D
RA

FT
14-7

-2
014

2.6 Exercise 43

2.5.2 Viral transmission histories

Another context in which a hierarchy of nested time-trees can be estimated
from a single data set is in the case of estimating transmission histories from
viral sequence data, where the nested time-tree is the viral gene tree, and the
encompassing tree is the tree describing transmissions between hosts.

In this interpretation, we argue that the natural generative model at the level
of the host population is a branching process of infections, where each branching
event represents a transmission of the disease from one infected individual to the
next, and the terminal branches of this transmission tree represent the transition
from infectious to recovery or death of the infected host organism. For multicel-
lular host species there is an additional process of proliferation of infected cells
within the host’s body (often restricted to certain susceptible tissues) that also
has a within-host branching process of cell-to-cell infections. This two-level hier-
archical process can be extended to consider different infectious compartments
at the host level, representing different stages in disease progression, and/or dif-
ferent classes of dynamic behaviour among hosts.

Accepting the above as the basic schema for the generative process, one needs
to also consider a typical observation process of an epidemic or endemic disease.
It is often the case that data is obtained through time from some fraction, but
not all, of the infected individuals. Figure 2.9 illustrates the relationship between
the full transmission history and the various sampled histories. The transmission
tree prior may be one of the birth-death models introduced in Section 2.4. The
gene tree prior may be a coalescent process within the transmission tree (analog
to a coalescent process within a species tree). Notice that the sampled host trans-
mission tree may have internal nodes with a single child lineage representing a
direct ancestor of a subsequent sample. We refer to such trees as sampled an-
cestor trees (Gavryushkina et al. 2013) and a reversible-jump Bayesian inference
scheme for such trees has recently been described (Gavryushkina et al. 2014).

This model schema (combining both the generative and observational pro-
cesses) can be readily simulated with a recently developed BEAST 2 package
called MASTER (Vaughan and Drummond 2013), and inference approaches un-
der models of similar form have been described (Ypma et al. 2013), but full
likelihood inference under the model depicted in Figure 2.9 is not yet available.

2.6 Exercise

Tajima (Tajima 1983) described the probability of different evolutionary relation-
ships on a sample of n genes. His trees were unlabeled but with ranked internal
nodes and thus could be called ranked tree shapes. With increasing n, the number
of ranked tree shapes grows faster than (unranked) tree shapes and slower than
ranked labelled trees. Let un be the number of ranked tree shapes for n taxa.
It is easy to see that u2 = u3 = 1. Tajima (1983) enumerated u4 and u5 but

D
RA

FT
14-7

-2
014

44 Evolutionary trees

Transmission history

A

B

C

D

Sampled
transmission history

B
C

D

A

Sampled
gene tree

B
C

D

A

Sampled
transmission tree

B
C

D

A

Figure 2.9 (i) A transmission tree and embedded pathogen gene tree; (ii) the sampled
transmission tree; (iii) the sampled pathogen gene tree; (iv) the sampled host
transmission tree.

did not give a general formula for counting the number of ranked tree shapes for
arbitrary size n. Below is a partially completed sequence of values up to u10:

(u2, u3, · · · , u10) = (1, 1, 2, 5, ?, 61, 272, 1385, ?).

Can you fill in one or both of the missing values in the sequence? Show your
working.

D
RA

FT
14-7

-2
014

3 Substitution and site models

The simplest measure of distance between a pair of aligned molecular sequences is
the number of sites at which they differ. This is known as the Hamming distance
(h). This raw score can be normalized for the length of a sequence (l) to get the
proportion of sites that differ between the two sequences, p = h/l. Consider two
hypothetical nucleotide fragments of length l = 10:

Sequence 1 A A T C T G T G T G
Sequence 2 A G C C T G G G T A

In these sequences h = 4 and p = 4/10 = 0.4. The proportion of sites that
are different, p, is an estimate of the evolutionary distance between these two
sequences. A single nucleotide site can, given enough time, undergo multiple sub-
stitution events. Because the alphabet of nucleotide sequences is small, multiple
substitutions can be hidden by reversals and parallel changes. If this is the case,
some substitutions will not be observed. Therefore the estimate of 0.4 substitu-
tions/site in this example could be an underestimate. This is easily recognized if
one considers two hypothetical sequences separated by a very large evolutionary
distance – for example 10 substitutions per site. Even though the two sequences
will be essentially random with respect to each other they will still, by chance
alone, have matches at about 25% of the sites. This would give them an uncor-
rected distance, p, of 0.75 substitutions/site, despite being actually separated by
10 substitutions/site.

To compensate for this tendency to underestimate large evolutionary distances,
a technique called distance correction is used. Distance correction requires an
explicit model of molecular evolution. The simplest of these models is the Jukes-
Cantor (JC) model (Jukes and Cantor 1969). Under the JC model, an estimate
for the evolutionary distance between two nucleotide sequences is:

d̂ = −3
4 ln

(
1− 4

3p
)

For the example above, the estimated genetic distance d̂ ≈ 0.571605, and this is
an estimate of the expected number of substitutions per site. This model assumes
that all substitutions are equally likely and that the frequencies of all nucleotides
are equal and at equilibrium. This chapter describes the JC model and related

D
RA

FT
14-7

-2
014

46 Substitution and site models

continuous time Markov processes. In general these models are assumed to act
independently and identical across sites in a sequence alignment.

3.1 Continuous-time Markov process

A continuous-time Markov process (CTMP) is a stochastic process taking values
from a discrete state space at random times, and which satisfies the Markov
property.

Let X(t) be the random variable representing the state of a Markov process
at time t. Assuming that the Markov process is in state i ∈ {A,C,G, T} at time
t, then in the next small moment, the probability that the process transitions to
state j ∈ {A,C,G, T} is governed by the instantaneous transition rate matrix Q:

Q =


· qAC qAG qAT

qCA · qCG qCT
qGA qGC · qGT
qTA qTC qTG ·

 ,
with the diagonal entries qii = −

∑
j 6=i qij , so that the rates for a given state

should sum to zero across the row. The off-diagonal entries qij > 0, i 6= j are
positive and represent rates of flow from nucleotide i to nucleotide j. The diagonal
entries qii represent the total flow out of nucleotide state i and are thus negative.
At equilibrium, the total rate of change per site per unit time is thus:

µ = −
∑
i

πiqii,

where πi is the probability of being in state i at equilibrium, so that µ is just
the weighted average outflow rate at equilibrium.

Figure 3.1 depicts the states and instantaneous transition rates in a general
Markov model on the DNA alphabet. In particular, for a small time ∆t we have:

Pr{X(t+ ∆t) = j|X(t) = i} = qij∆t.

In general, the transition probability matrix, P (t), provides the probability for
being state j after time t, assuming the process began in state i:

P (t) = exp(Qt)

For simple models, such as the Jukes-Cantor model (see following section)
the elements of the transition probability matrix have analytical closed form
solutions. However for more complex models (including GTR) this matrix expo-
nentiation can only be computed numerically, typically by Eigen decomposition
(Stewart 1994).

D
RA

FT
14-7

-2
014

3.2 DNA models 47

A

C G

T

qAC

qAG

qAT

qCA

qCG

qCT

qGA

qGC

qGT

qTA

qTC

qTG

Figure 3.1 Transition rates for a DNA model of evolution.

3.1.1 Time-reversible and stationary

For the purposes of modelling substitution processes, time-reversible and sta-
tionary Markov processes are mostly used. Both of these properties are valu-
able principally because they describe processes that are more mathematically
tractable, as opposed to biologically realistic.

A stationary CTMP has the following properties:

πQ = 0, πP (t) = π, ∀t,

where π = [πA, πC , πG, πT] is the equilibrium distribution of base frequencies. In
addition, a time-reversible CTMP satisfies the detailed balance property:

πiP (t)ij = πjP (t)ji, ∀i, j, t.

3.2 DNA models

DNA substitution models are specified over a 4-letter alphabet C = {A,C,G, T}
with 12 transition rates in the instantaneous rate matrix (see Figure 3.1). This
section describes the construction of the rate matrix for a number of the common
named DNA substitution models as well as calculation of the resulting transition
probabilities where a closed-form solution exists.

D
RA

FT
14-7

-2
014

48 Substitution and site models

3.2.1 Jukes-Cantor

The Jukes-Cantor process (Jukes and Cantor 1969) is the simplest continuous
time Markov process. All transitions have equal rates, and all bases have equal
frequencies (πA = πC = πG = πT = 1/4). An unnormalised Q̂ matrix for the
Jukes-Cantor model is:

Q̂ =


−3 1 1 1
1 −3 1 1
1 1 −3 1
1 1 1 −3

 ,
However it is customary when describing substitution processes with a CTMP

to used a normalized instantaneous rate matrix Q = βQ̂, so that the normalized
matrix has an expected mutation rate of 1 per unit time, i.e. µ = −

∑
i πiqii = 1.

This can be achieved by choosing β = 1/ −
∑
i πiq̂ii. For the above Q̂ matrix,

setting Q = 1
3 Q̂, leads to a normalized Q matrix for the Jukes-Cantor model of:

Q =


−1 1/3 1/3 1/3
1/3 −1 1/3 1/3
1/3 1/3 −1 1/3
1/3 1/3 1/3 −1

 .
Notice that this matrix has no free parameters. The benefit of normalizing to

unitary output is that the times to calculate transition probabilities for can now
be expressed in substitutions per site (i.e. genetic distances). The entries of the
transition probability matrix for the Jukes-Cantor process are easily computed
and as follows:

pij(d) =
{

1
4 + 3

4 exp
(
− 4

3d
)

if i = j
1
4 −

1
4 exp

(
− 4

3d
)

if i 6= j
,

where d is the evolutionary time in units of substitutions per site. The transition
probabilities from nucleotide A are plotted against genetic distance (d) in Figure
3.2. It can be seen that at large genetic distances the transition probabilities all
asymptote to 1

4 , reflecting the fact that for great enough evolutionary time, all
nucleotides are equally probable, regardless of the initial nucleotide state. Armed
with the transition probabilities in Equation 3.2.1 it is possible to develop a
probability distribution over hamming distance h for a give genetic distance (d)
between two sequences of length l:

L(d) = Pr(h|d) =
(
l

h

)
pii(d)(l−h) [1− pii(d)]h

Using the example from the beginning of the chapter, where the two sequences

D
RA

FT
14-7

-2
014

3.2 DNA models 49

0 0.5 1 1.5 2
0

0.25

1

Genetic distance (d)

JC
tr

an
si

tio
n

pr
ob

ab
ili

ty

pAA(d)

pAC(d) = pAG(d) = pAT (d)

Figure 3.2 The transition probabilities from nucleotide A for the Jukes-Cantor model,
plotted against genetic distance (d = µt).

were of length L = 10 and differed atH = 4 sites the (log-)likelihood as a function
of d is shown in Figure 3.3.

3.2.2 K80

The K80 model (Kimura 1980) distinguishes between transitions (A ←→ G

and C ←→ T state changes) and transversions (state changes from a purine to
pyrimidine or vice versa). The model assumes base frequencies are equal for all
characters. This transition/transversion bias is governed by the κ parameter and
the Q matrix is:

Q = β


−2− κ 1 κ 1

1 −2− κ 1 κ

κ 1 −2− κ 1
1 κ 1 −2− κ

 ,

The normalized Q is obtained by setting β = 1
2+κ . Note that this model has

one free parameter, κ. The transition probabilities are:

pij(d) =


1
4 + 1

4 exp(− 4
κ+2d) + 1

2 exp(− 2κ+2
κ+2 d) if i = j

1
4 + 1

4 exp(− 4
κ+2d)− 1

2 exp(− 2κ+2
κ+2 d) if transition

1
4 −

1
4 exp(− 4

κ+2d) if transversion
.

D
RA

FT
14-7

-2
014

50 Substitution and site models

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-12

-10

-8

-6

Genetic distance, d

ln
l(
d
)

Figure 3.3 The log likelihood curve for genetic distance between two sequences of
length 10 and differing at 4 sites.

0.0 0.5 1.0 1.5 2.0
0

0.25

1

Genetic distance (d)

K
80

tr
an

si
tio

n
pr

ob
ab

ili
ty

(κ
=

4)

pAA(d)
pAG(d)

pAC(d) = pAT (d)

Figure 3.4 The transition probabilities from nucleotide A for the K80 model with
κ = 4, plotted against genetic distance (d = µt). Although, in this case, pAG(d)
exceeds 1

4 at genetic distances above d = ln 2 ≈ 0.693147, all transition probabilities
still asymptote to 1

4 for very large d.

D
RA

FT
14-7

-2
014

3.2 DNA models 51

0 0.5 1 1.5 2
0

1

Genetic distance (d)

F8
1

tr
an

si
tio

n
pr

ob
ab

ili
ty

πA

πC
πT
πG

pAA(d)

pAC(d)

pAG(d)
pAT (d)

Figure 3.5 The transition probabilities from nucleotide A for the F81 model with
π = (πA = 0.429, πC = 0.262, πG = 0.106, πT = 0.203), plotted against genetic
distance (d = µt).

3.2.3 F81

The F81 model (Felsenstein 1981) allows for unequal base frequencies (πA 6=
πC 6= πG 6= πT). The Q matrix is:

Q = β


πA − 1 πC πG πT
πA πC − 1 πG πT
πA πC πG − 1 πT
πA πC πG πT − 1

 .
The normalized Q is obtained by setting β = 1

1−
∑

i
π2
i

. Note that this model
has three free parameters, since the constraint that the four equilibrium frequen-
cies must sum to 1 (πA+πC +πG+πT = 1) removes one degree of freedom. The
transition probabilities are:

pij(d) =
{
πi + (1− πi)e−βd if i = j

πj(1− e−βd) if i 6= j
.

3.2.4 HKY

The HKY process (Hasegawa et al. 1985) was introduced to better model the
substitution process in primate mtDNA. The model combines the parameters
in the K80 and F81 models to allow for both unequal base frequencies and a
transition/transversion bias. The Q matrix has the following structure:

D
RA

FT
14-7

-2
014

52 Substitution and site models

Q = β


· πC κπG πT
πA · πG κπT
κπA πC · πT
πA κπC πG ·

 .
The diagonal entries are omitted for clarity, but as usual are set so that the

rows sum to zero. The transition probabilities for the HKY model can be com-
puted and have a closed-form solution, however the formulae are rather long-
winded and are omitted for brevity.

3.2.5 GTR

The GTR model is the most general time reversible stationary CTMP for de-
scribing the substitution process. The Q matrix is:

Q = β


· aπC bπG cπT

aπA · dπG eπT
bπA dπC · πT
cπA eπC πG ·

 .
The normalized Q is obtained by setting β = 1/[2(aπAπC + bπAπG + cπAπT +

dπCπG + eπCπT + πGπT)]. The transition probabilities do not have a simple
closed form solution and thus a numerical approach to the matrix exponentiation
is required.

3.3 Codon models

Protein-coding genes have a natural pattern due to the genetic code that can be
exploited by extending a 4-nucleotide state space to a 64-codon state space.

Two pairs of researchers published papers on codon-based Markov models of
substitution in the same volume in 1994 (Goldman and Yang 1994; Muse and
Gaut 1994). The key features they shared were:

• A 61-codon state space (excluding the three stop codons)
• A zero rate for substitutions that changed more than one nucleotide in a codon

at any given instant (so each codon has 9 immediate neighbours, minus any
stop codons).

• A synonymous/nonsynonymous bias parameter making synonymous muta-
tions, that is mutations that do not change the protein that the codon
codes for, more likely than nonsynonymous mutations.

Given two codons i = (i1, i2, i3) and j = (j1, j2, j3) the Muse-Gaut-94 codon
model has the following entries in the Q matrix:

D
RA

FT
14-7

-2
014

3.4 Microsatellite models 53

qij =


βωπjk if nonsynonymous change at codon position k

βπjk if synonymous change at codon position k

0 if codons i and j differ at more than one position
.

In addition the Goldman-Yang-94 model includes a transition/transversion
bias giving rise to entries in Q as follows:

qij =



βκωπj if nonsynonymous transition
βωπj if nonsynonymous transversion
βκπj if synonymous transition
βπj if synonymous transversion
0 if codons differ at more than one position

.

Notice that in the Goldman-Yang model the equilibrium distribution is parametrized
in terms of 61 codon frequencies, whereas in the Muse-Gaut model the equilib-
rium distribution is parametrized in terms of four nucleotide frequencies.

Finally, in both of these models, if β is chosen so that Q has unitary output
then branches will be in units of substitutions per codon rather than per site.
So, in order to have branches of the same scale as in nucleotide models, a codon-
based Q matrix should be scaled to have a total rate of 3 per unit time, instead
of 1, i.e. −

∑
i πiqii = 3.

3.4 Microsatellite models

A microsatellite (or short tandem repeat; STR) is a region of DNA in which a
short DNA sequence motif (length 1 to 6 nucleotides) is repeated in an array, e.g.
the sequence AGAGAGAGAGAGAG is a dinucleotide microsatellite comprising
7 repeats of the motif AG. Because they are abundant, widely distributed in
the genome and highly polymorphic, microsatellites have become one of the
most popular genetic markers for making population genetic inferences in closely
related populations.

Unequal crossing over (Richard and Pâques 2000; Smith 1976) and replication
slippage (Levinson and Gutman 1987) are the two main mechanisms proposed
to explain the high mutation rate of microsatellites. The simplest microsatellite
model is the Stepwise Mutation Model (SMM) proposed by Ohta and Kimura
(1973), which states that the length of the microsatellite increases or decreases
by one repeat unit at a rate independent of the microsatellite length. For SMM
the Q matrix has the following entries:

D
RA

FT
14-7

-2
014

54 Substitution and site models

qij =


β if |i− j| = 1
0 if |i− j| > 1
−
∑
k 6=i qik if i = j

.

There are a large number of more complex models that have been introduced
in the literature to account for length-dependent mutation rates, mutational
bias (unequal rates of expansion and contraction) and “two-phase” dynamics,
in which the length of the repeat changes by more than 1 repeat unit with a
single mutation. For a good review of these models, and a description of a nested
family of microsatellite models that encompasses most of the variants, see Wu
and Drummond (2011).

3.5 Felsenstein’s likelihood

The phylogenetic likelihood of a time-tree g is the probability of the sequence
data (D), given the phylogenetic tree and a substitution model. First consider a
n× L matrix representing a sequence of length L at every node in the tree:

D =


DI1

DI2
...

DIn

 =


sI1,1 sI1,2 · · · sI1,L

sI2,1 sI2,2 · · · sI2,L

...
...

. . .
...

sIn,1 sIn,2 · · · sIn,L

 ,

where Ik is the index of the kth leaf node and DIk is the sequence associated
with it. The entry sIk,j is a nucleotide base at site j of the sequence, taking
values in the set C = {A,C,G, T}.

The likelihood of the tree g is:

L(g) = Pr{D|g,Ω},

where Ω = {Q,µ} includes parameters of the substitution model and the overall
rate µ.

Let DY represent the (n−1)×L matrix whose rows are the unknown ancestral
sequences at the internal nodes (Y) of the tree g:

DY =


DY1

DY2
...

DYn−1

 =


sY1,1 sY1,2 · · · sY1,L

sY2,1 sY2,2 · · · sY2,L

...
...

. . .
...

sYn−1,1 sYn−1,2 · · · sYn−1,L

 .

Let D = C(n−1)L denote the set of all possible ancestral sequences.

D
RA

FT
14-7

-2
014

3.6 Rate variation across sites 55

〈i, j〉

i

j

ti

tj

Figure 3.6 A focal branch 〈i, j〉 in the time-tree g = {R, t}.

Consider an edge 〈i, j〉 ∈ R of tree g = {R, t} (see Figure 3.6). The indi-
vidual associated with node j is a direct descendant of the individual associ-
ated with node i. However the sequences Di and Dj may differ if substitutions
have occurred in the interval. Applying a CTMP model of substitution we have
Pr{sj,k = c′|si,k = c} =

[
eQµ(ti−tj)]

c,c′
. Then the probability for any particular

set of sequences D to be realized at the leaf nodes of the tree is:

Pr{D|g,Ω} =
∑
DY ∈D

∏
〈i,j〉∈R

L∏
k=1

[
eQµ(ti−tj)

]
si,k,sj,k

(in the above formula, compact notation is obtained by including in the product
over edges an edge terminating at the root from an ancestor of infinite age.)

The sum over all possible ancestral sequences DY looks onerous, but using a
pruning algorithm Felsenstein (1981) demonstrated an efficient polynomial-time
algorithm that makes this integration over unknown ancestral sequences feasible
(see Section 3.7).

3.6 Rate variation across sites

It is common to allow rate variation across sites, and a key component of most
models of rate variation across sites is the discrete Gamma model introduced by
Yang (1994). For K discrete categories this involves K times the computation as
can be seen in the likelihood where an extra sum is used to average the likelihood
over the K categories for each site in the alignment:

D
RA

FT
14-7

-2
014

56 Substitution and site models

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

relative rate

P
ro

ba
bi

lit
y

de
ns

ity

α = 0.25

α = 1

α = 4

α = 16

Figure 3.7 The Γ distribution for different values of the shape parameter α with scale
parameter set to 1/α so that the mean is 1 in all cases.

Pr{D|g,Ω} =
L∏
k=1

K∑
c=1

1
K

 ∑
DY ∈D

∏
〈i,j〉∈R

[
eQµrc(ti−tj)

]
si,k,sj,k

 .

Here rc is the relative rate of the cth rate category in the discrete Gamma
distribution and Ω = {Q,µ, γ} includes the shape parameter (α) of the discrete
Gamma model of rate variation across sites, governing the values of r1, r2, . . . , rK .
Figure 3.7 shows how the density of the continuous Gamma distribution varies
from L-shaped (α ≤ 1) to bell-shaped (α� 1) with the shape parameter α.

Despite this flexibility, the introduction of a separate category of invariant
sites that are assumed to have an evolutionary rate of zero can improve the fit
to real data. This is the so called Γ + I approach to modeling rate variation (Gu
et al. 1995; Waddell and Penny 1996). Model selection will often favor Γ+I over
Γ, although accurate estimation of the two parameters (a proportion of invariant
sites, pinv, and α) is highly sensitive to sampling effects (Sullivan and Swofford
2001; Sullivan et al. 1999).

D
RA

FT
14-7

-2
014

3.7 Felsenstein’s pruning algorithm 57

1 2

b1
b2

3 4

b3 b4

5

b6

b5

b7

b8

9

8

7

6

Figure 3.8 An example tree to illustrate the “pruning” algorithm.

3.7 Felsenstein’s pruning algorithm

The “pruning” algorithm for computing the phylogenetic likelihood was intro-
duced by Felsenstein (1981). In the following discussion we will consider a single
site s and the corresponding nucleotide states associated with the ancestral nodes
sY in the five-taxon tree in Figure 3.8:

s =


s1
s2
s3
s4
s5

 , sY =


s6
s7
s8
s9

 ,

Together they form a full observation:

sV =
(

s
sY

)
=


s1
s2
...
s9

 ,

Consider the tree in Figure 3.8. If we had full knowledge of the sequences
at internal nodes of this tree then the probability of site pattern sV can be
easily computed as a product of transition probabilities over all branches 〈i, j〉
multiplied by the prior probability of the nucleotide state at the root node (πs9),
i.e.:

D
RA

FT
14-7

-2
014

58 Substitution and site models

Pr{sV |g} = πs9

∏
〈i,j〉

psisj (bj)

= πs9ps9s7(b7)ps7s1(b1)ps7s2(b2)×
ps9s8(b8)ps8s5(b5)ps8s6(b6)ps6s3(b3)ps6s4(b4)

However since we don’t know the ancestral nucleotides sY we must integrate
over their possible values to get the probability of the leaf data:

Pr{s|g} =
∑
sY

Pr{sV |g}

=
∑
s9∈C

∑
s8∈C

∑
s7∈C

∑
s6∈C

πs9ps9s7(b7)ps7s1(b1)ps7s2(b2)×

ps9s8(b8)ps8s5(b5)ps8s6(b6)ps6s3(b3)ps6s4(b4)

Felsenstein makes the point that you can move the summations in the above
equation rightwards to reduce the amount of repeated calculation:

Pr{s|g} =
∑
s9∈C

πs9

{∑
s7∈C

ps9s7(b7) [ps7s1(b1)] [ps7s2(b2)]
}
×{∑

s8∈C
ps9s8(b8) [ps8s5(b5)]

[∑
s6∈C

ps8s6(b6) (ps6s3(b3)) (ps6s4(b4))
]}

.

Notice that the pattern of brackets mirrors the topology of the tree. This is
a clue that equation 3.7 can be re-defined in terms of a recursion that can be
efficiently computed by dynamic programming.

Now define a matrix of partial likelihoods:

L =


L1,A L1,C L1,G L1,T
L2,A L2,C L2,G L2,T

...
...

...
...

L2n−1,A L2n−1,C L2n−1,G L2n−1,T

 ,

where Li,c is the partial likelihood of the data under node i, given the ancestral
character state at node i is c ∈ C. The entries of L can be defined recursively.
Assuming the two descendant branches of internal node y are 〈y, j〉 and 〈y, k〉
we have:

Ly,c =
[∑
x∈C

pcx(bj)Lj,x

]
×

[∑
x∈C

pcx(bk)Lk,x

]
.

For leaf node i the partial likelihoods are simply:

D
RA

FT
14-7

-2
014

3.8 Miscellanea 59

Li,c =
{

1 if c = si

0 otherwise

From this formulation it is clear that the partial likelihoods in L can be com-
puted by filling the table row by row proceeding from the top. Each entry takes
time proportional to the number of character states S = |C|, so each row takes
time O(S2). Thus the overall running time of the algorithm is O(nS2); linear in
the number of taxa and quadratic in the number of possible character states.

3.8 Miscellanea

3.8.1 Model averaging

Instead of selecting a single substitution model for a fixed subset of sites, MCMC
makes it possible to average over substitution models and sites. Using reversible
jump, Huelsenbeck et al. (2004) averages over all nucleotide substitution models.
In contrast, Wu et al. (2013) and Bouckaert et al. (2013) are using the same idea
to average over just a hierarchy of substitution models (see Section 15.3 for the
latter hierarchy). Wu et al. (2013) group sites and assign a substitution model
and rate to each group, but no structure among sites is assumed, and the number
and constitution of groups is averaged over during the MCMC run. On the other
hand, Bouckaert et al. (2013) averages over sites, but groups sites in consecutive
blocks. Both models are available in BEAST.

3.8.2 Models for language evolution

Languages can be encoded by binary sequences representing the presence or
absence of cognates. Cognates are word forms that share a common ancestry,
such as for example ‘hand’ in English, Dutch and German. In French, the word
for hand is ‘main’ and in Spanish and Italian it is ‘mano’. So, for the first three
languages get a ‘1’ for the ‘hand’ cognate and ‘0’ for the ‘main’ form, while in the
last three languages it is the other way around. Languages encoded this way give
an alignment that lends itself to the same kind of analysis as a DNA sequences
(Bouckaert et al. 2012; Gray and Atkinson 2003; Gray et al. 2009). However,
specialised substitution models are required to deal with this data. The most
successful are the continuous time Markov chain (CTMC) model (which is the
equivalent of GTR for just two states), the covarion model (Penny et al. 2001),
and the stochastic Dollo model (Nicholls and Gray 2006). The covarion model
assumes a fast and slow rate of evolution and allows switching between the two.
The stochastic Dollo model is inspired by Dollo’s law, which states that cognates
can evolve only once.

D
RA

FT
14-7

-2
014

60 Substitution and site models

3.8.3 Substitution models for morphological data

Often, morphological data is available for the taxa in sequence alignments. The
MK model (Lewis 2001) is a generalisation of the Jukes Cantor model for different
numbers of states; it uses a rate matrix with constant rates throughout, but
the size of the matrix is adjusted to the number of values the morphological
characters can take. Morphological data is typically selected based on the fact
that there is variation in these features. The MKv model (Lewis 2001) takes this
in account by extending the MK model by using ascertainment correction for
constant sites. Using the MKv model instead of the MK model results in more
accurate branch length estimates. This model was applied by Pyron (2011) to
estimate divergence times of Lissamphibia by dividing morphological characters
into groups with the same number of states.

D
RA

FT
14-7

-2
014

4 The molecular clock

4.1 Time-trees and evolutionary rates

The dual concepts of a time-tree and a molecular clock are central to any attempt
at interpreting the chronological context of molecular variation. As we saw in
chapter 2, several natural tree prior distributions (e.g. coalescent and birth-death
families) generate time-trees, rather than unrooted trees. But how are these
time-trees reconciled with the genetic differences between sequences modelled in
chapter 3? The answer is the application of a molecular clock. The concept of a
molecular clock traces back at least to the 1960’s. One of the early applications
of the molecular clock was instrumental in a celebrated re-calibration of the
evolutionary relatedness of humans to other Great Apes, when Allan Wilson
and Vincent Sarich described an “evolutionary clock” for albumin proteins and
exploited the clock to date the common ancestor of humans and chimpanzees to
five million years ago (Sarich and Wilson 1967).

0

1

3

4.5

A B

1.5 1

C

1

0.5

D

0.5

1

B

A

C

D

Figure 4.1 A time tree of four taxa, branches labelled with rates of evolution and the
resulting non-clock-like tree with branches drawn proportional to substitutions per
site.

D
RA

FT
14-7

-2
014

62 The molecular clock

Figure 4.2 Five realizations of a Poisson accumulation process (λ = 1) showing the
total number of substitutions accumulated through time. All five realizations have the
same substitution rate, but the time at which they reach 24 substitutions varies
widely.

4.2 The molecular clock

The molecular clock is not a metronome. Each tick of the clock occurs after a
stochastic waiting time. Let D(t) be a random variable representing the num-
ber of substitutions experienced over evolutionary time t. The probability that
exactly k substitutions have been experiencing in time t is:

Pr{D(t) = k} = e−λt(λt)k

k!

Figure 4.2 shows five realizations of the Poisson accumulation process, D(t),
showing the total number of substitutions accumulated through time. All five
realizations have the same substitution rate, but the time at which they reach
24 mutations varies widely.

For example, if a substitution occurs on average, once a week (say in a lineage
of a rapidly evolving virus) then after twelve weeks the expected number of
substitutions is 12. However 95% of such lineages will have between 6 and 18
substitutions (see Figure 4.3).

D
RA

FT
14-7

-2
014

4.3 Relaxing the molecular clock 63

Figure 4.3 The Poisson distribution (λt = 12)

4.3 Relaxing the molecular clock

Researchers have grappled with the tension between molecular and non-molecular
evidence for evolutionary time scales since Wilson and Sarich’s ground break-
ing work (Sarich and Wilson 1967; Wilson and Sarich 1969) on the ancestral
relationship between humans and chimpanzees. Recently, a number of authors
have developed “relaxed molecular clock” methods. These methods accommo-
date variation in the rate of molecular evolution from lineage to lineage. In
addition to allowing non-clock-like relationships among sequences related by a
phylogeny, modelling rate variation among lineages in a gene tree also enable
researchers to incorporate multiple calibration points that may not be consistent
with a strict molecular clock. These calibration points can be associated either
with the internal nodes of the tree or the sampled sequences themselves. Further-
more, relaxed molecular clock models appear to fit real data better than either
a strict molecular clock or the other extreme of no clock assumption at all. In
spite of these successes, controversy still remains around the particular assump-
tions underlying some of the popular relaxed molecular clock models currently
employed. A number of authors argue that changes in the rate of evolution do
not necessarily occur smoothly nor on every branch of a gene tree. The alter-
native expounds that large subtrees share the same underlying rate of evolution
and that any variation can be described entirely by the stochastic nature of the
evolutionary process. These phylogenetic regions or subtrees of rate homogeneity
are separated by changes in the rate of evolution. This alternative model may be
especially important for gene trees that have dense taxon sampling, in which case

D
RA

FT
14-7

-2
014

64 The molecular clock

0

t5

t6

t7

1 2

r1 r2

3

r5

r3

4

r6

r4

Figure 4.4 A time tree of four taxa, branches labelled with rates of evolution.

there are potentially many short closely related lineages amongst which there is
not reason a priori to assume differences in the underlying rate of substitution.

A Bayesian framework for allowing the substitution rate to vary across branches
has the following structure:

f(g, r, θ|D) = Pr{D|g, r, θ}f(r|θ, g)f(g|θ)f(θ)
Pr{D} , (4.1)

where r is a vector of substitutions rates, one for each branch in the tree (g). For
brevity, the vector θ represents all other parameters in the model, including the
parameters of the relaxed-clock model that govern r (e.g., µ and S2 in the case
of log-normally distributed rates among branches), as well as the parameters
of the substitution model and tree prior. As usual, D is the multiple sequence
alignment. In the following sections we will survey a number of alternative ap-
proaches to relaxing the molecular clock. In most cases the term f(r|θ, g) can be
further broken down into a product of densities over all the branches in the tree:

f(r|θ, g) =
∏
〈i,j〉∈R

f(rj |Φ),

where j is a unique index associated with the tip ward node of branch 〈i, j〉 in
tree g.

D
RA

FT
14-7

-2
014

4.3 Relaxing the molecular clock 65

4.3.1 Autocorrelated substitution rates across branches

A model of autocorrelated substitution rates across branches was first introduced
by Thorne et al. (1998). They employed a geometric Brownian motion model to
specify f(r|θ, g) in equation 4.1, as follows:

f(ri|µR, σ2) = 1
ri
√

2πτiσ2 exp
{
− 1

2τiσ2

(
ln(ri/rA(i))

)2
}
,

where A(i) is the index of the parent branch of the ith branch, rA(root) = µR
by definition, and τi is the time separating branch i from its parent. The precise
definition of τi and the means by which the ri parameters are applied to the
tree has varied in the literature. In the original paper τi was defined as the time
between the midpoint of branch i and the midpoint of its parent branch:

τi = tA(i) + bA(i)/2− (ti + bi/2),

where ti is the time of the tip-ward node of the ith branch and bi = tA(i) − ti.
Subsequently, Kishino et al. (2001) associated a rate r′i with the ith node

(the node on the tip-ward end of the branch i, whose time is ti) and applied a
bias-corrected geometric Brownian motion model:

f(r′i|µR, σ2) = 1
r′i
√

2πbiσ2 exp
{
− 1

2biσ2

(
ln(r′i/r′A(i)) + biσ

2

2

)2}
,

The aim of the bias correction term biσ
2

2 is to produce a child substitution rate
whose expectation is equal to that of the parent rate, i.e. E(ri) = rA(i). Finally,
instead of using r′i as the substitution rate of the ith branch, Kishino et al. (2001)
used the arithmetic average of the two node-associated rates: ri = (r′i+ r′A(i))/2.

There are many variations on the clock autocorrelated models described above,
including the compound Poisson process (Huelsenbeck et al. 2000), and the
Thorne-Kishino continuous autocorrelated model (Thorne and Kishino 2002 Oct).
The first draws the rate multiplier ri from a Poission distribution, while the lat-
ter draws ri from a log-normal with mean rA(i) and variance proportional to the
branch length.

4.3.2 Uncorrelated substitution rates across branches

The basic idea behind the “uncorrelated rates across branches” model is that
a priori substitution rates are independent and identically distributed across
branches. The ith branch will have a rate ri drawn independently from the
parent distribution. Drummond et al. (2006) considered the exponential and
lognormal distributions for parent distributions. Rannala and Yang (2007) also
considered the lognormal distribution. The lognormal distribution has the benefit
of including a parameter governing the variance of rates across branches and thus

D
RA

FT
14-7

-2
014

66 The molecular clock

allows a measure of the extent to which the strict clock requires relaxing. The
probability density of ri, the rate of the ith branch is given by:

f(ri|M,S) = 1
ri
√

2πS2
exp

{
− 1

2S2 [ln(ri)−M]2
}

Where M is the mean of the logarithm of the rate and S2 is the variance of
the log rate. An alternative parametrization used by Rannala and Yang (both
parametrizations are available in BEAST) employs the mean rate µ instead of
M :

f(ri|µ, S) = 1
ri
√

2πS2
exp

{
− 1

2S2 [ln(ri/µ) + 1/2S2]2
}

Regardless of the parametrization, a number of technical alternatives to sam-
pling such a model in an MCMC framework have been described (Drummond
et al. 2006; Li and Drummond 2012; Rannala and Yang 2007). The independent
gamma rate model (Lepage et al. 2007) is similar to the uncorrelated clock model
but draws clock rates from a gamma distribution with variances proportional to
the branch length.

4.3.3 Random local molecular clocks

Local molecular clocks are another alternative to the strict molecular clock (Yo-
der and Yang 2000). A local molecular clock permits different regions in the tree
to have different rates, but within each region the rate must be the same. Early
applications of local molecular clock models did not include the modelling of
uncertainty in the (i) phylogenetic tree topology, (ii) the number of local clocks
or (iii) the phylogenetic positions of the rate changes between the local clocks.
However more recently a Bayesian approach has been described that allows av-
eraging over all possible local clock models in a single analysis (Drummond and
Suchard 2010). For a model that allows one rate change on a rooted tree there
are 2n − 2 branches on which the rate change can occur. To consider two rate
changes, one must consider (2n− 2)× (2n− 3) possible rate placements. If each
branch can have 0 or 1 rate changes then the total number of local clock models
that might be considered is 22n−2, where n is the number of taxa in the tree.
For even moderate n this number of local clock models can not be evaluated
exhaustively.

The Bayesian random local clock (RLC) model (Drummond and Suchard;
2010), nests all possible local clock configurations, and thus samples a state
space that includes the product of all 22n−2 possible local clock models on all
possible rooted trees. Because the RLC model includes the possibility of zero
rate changes, it also serves to test whether one rate is sufficient, or whether some
relaxation of a single molecular clock is required for the phylogeny at hand.

The random local clock model comes in two flavours. Both are parametrized

D
RA

FT
14-7

-2
014

4.3 Relaxing the molecular clock 67

1 2

0 1

3

0

0

4

1

0

1 2

φ1 φ2

3

φ5

φ3

4

φ6

φ4

1 2

φ6 φ2

3

φ6

φ6

4

φ6

rroot

Figure 4.5 Left: the indicator variables for changes in rate. Center: branches labelled
with corresponding elements of Φ. Right: The resulting rates on the branches, once
the indicator mask is applied.

by a substitution rate associated with the branch above the root (rroot) and a
pair of vectors, Φ = {φ1, φ2, . . . , φ2n−2} and B = {β1, β2, . . . , β2n−2}.

The simpler of the two flavours of random local clock computes branch rates
for all nodes apart from the root as follows:

ri =
{
rA(i) if βi = 0
φi otherwise

From this it can be seen that B acts as a set of binary indicators, one for each
branch. If βi = 0 then the ith branch simply inherits the same substitution rate
as its parent branch, otherwise it takes up an entirely independent rate, φi. Thus
the branches where βi = 1 are the locations in the tree where the substitution
rate changes from one local clock to the next (see Figure 4.5). Setting all βi to
zero gives rise to a strict clock.

The second flavour, and the one described in detail by Drummond and Suchard
(2010) computes branch lengths as follows:

ri =
{
rA(i) if βi = 0
φi × rA(i) otherwise

This model retains some autocorrelation in substitution rate from a parent
local clock to a ‘child’ local clock, with the parameters of Φ interpreted as rel-
ative rate modifiers in this framework, rather than absolute rates as in the first
construction. Regardless, in order to sample either of these models in a Bayesian
framework, the key to success is the construction of an appropriate prior on Φ
and B. Drummond and Suchard (2010) defined K, the number of rate change
indicators:

D
RA

FT
14-7

-2
014

68 The molecular clock

K =
2n−2∑
i=1

βi

and suggested a prior on B that would induce a truncated Poisson prior distri-
bution on K:

K ∼ Truncated-Poisson(λ),

The prior on Φ can be chosen relatively freely. Independent and identically
distributed from a lognormal distribution would be quite appropriate for the
elements of Φ in the uncorrelated RLC model. Independent and identically dis-
tributed from a Gamma distribution has been suggested for elements of Φ in the
autocorrelated RLC model (Drummond and Suchard 2010).

Although the basic idea of the random local clock model is simple, there are a
number of complications to its implementation in a Bayesian framework that are
not dealt with here. These include normalization of the substitution rate across
the phylogeny in the absence of calibrations and issues related to sampling across
models of differing dimensions. For readers interested in these finer details, we
refer you to the original paper by Drummond and Suchard (2010).

4.3.4 Branch rates vs site rates

In Section 3.6 we looked at calculating the likelihood of the data Pr{D|g,Ω} with
variation of rates among sites, typically implemented by averaging over various
categories with a different rate for each category. When calculating Pr{D|g,Ω}
both branch and site rates are involved. For a particular category, a site rate is
a multiplier for the complete tree, that is, every branch length is multiplied by
the site rate. Furthermore, every branch length is multiplied by the branch rate,
and this branch rate is constant over the various categories. So, for a certain rate
category rc the branch i the length is multiplied by both rc and branch rate ri,
but the rate category rc varies with different categories, while the branch rate ri
can vary with different branches.

4.4 Calibrating the molecular clock

Molecular clock analysis and divergence time dating go hand in hand. The cal-
ibration of a molecular clock to an absolute time scale leads directly to ages
of divergences in the associated time-tree. Although divergence-time dating is
a well established cornerstone of evolutionary biology, there is still no widely-
accepted objective methodology for converting information from the fossil record
to calibration information for use in molecular phylogenies.

D
RA

FT
14-7

-2
014

4.4 Calibrating the molecular clock 69

4.4.1 Node dating

A standard, though well-criticized (for a critique see Ronquist et al. 2012) ap-
proach to divergence time dating has been termed node dating by Ronquist et al.
(2012). It involves applying the geological age of a fossil as a “calibration” to
the phylogenetic divergence it is deemed to correspond to. Usually the geological
age of the fossil is transformed into a calibration density aimed at capturing the
various sources of uncertainty inherent in associating a fossil with a particular
divergence.

There are a number of problems with this approach. The three most serious
shortcomings of node dating are (i) the reliance on indirect use of the fossil ev-
idence to determine which molecular divergence the fossil corresponds to, (ii)
the need to determine the exact form of the calibration density and (iii) the
assumption that the fossil does indeed correspond to a node in the molecular
phylogeny (as opposed to some extinct offshoot, or to a direct ancestor along
one of the lineages in between two divergences). These shortcomings are some-
what intertwined and the last two can be somewhat alleviated by developing a
calibration density for the dated node based on an explicit model of phyloge-
netic speciation and extinction. Using stochastic simulation based on a simple
phylogenetic birth-death model, Monte Carlo model-based calibration densities
can be constructed (Matschiner and Bouckaert 2013).

However, regardless of how the calibration density for a phylogenetic diver-
gence is arrived at, there is an additional challenge for Bayesian node dating.
The task of correctly constructing a Bayesian tree prior that composes one or
more fossil calibration densities with an underlying tree process prior involves
computational challenges when the phylogenetic tree is also inferred (Heled and
Drummond 2012, 2013)1.

4.4.2 Leaf dating

For some types of molecular data, the difference in sampling dates of the se-
quenced taxa is sufficient to provide direct calibration of the molecular clock
(Drummond et al. 2002; Rambaut 2000). Such molecular data is variously termed
serially sampled, time-stamped or heterochronous sequence data and can be said
to come from measurably evolving populations (Drummond et al. 2003). The prin-
ciple sources of such data are ancient DNA (e.g. Lambert et al. 2002; Shapiro
et al. 2004), and rapidly evolving pathogens (Kühnert et al. 2011) including
RNA viruses (for a review see Jenkins et al. 2002) and whole-genome sequenced
bacteria (e.g. Ford et al. 2011).

1 The composition of calibrated birth-death tree priors is more straightforward for Bayesian
divergence-time dating on a fixed tree topology (Yang and Rannala 2006).

D
RA

FT
14-7

-2
014

70 The molecular clock

4.4.3 Total-evidence leaf dating

A recent attempt to provide a principled alternative to node dating was described
by the authors as “a total-evidence approach to dating with fossils” (Ronquist
et al. 2012). This approach essentially uses leaf dating of fossil taxa, but relies
on morphological data instead of molecular data to position the fossil taxa in
the phylogeny. Each fossil is represented by a leaf in a (total-evidence) time-tree,
that also includes leaves representing all extant species. The age of each fossil
leaf is determined by the geological stratum in which the fossil was discovered.
The uncertainty in the phylogenetic location of the fossil leaves are integrated
over via MCMC using the phylogenetic likelihood of morphological data collected
from both extant and fossil taxa. If available, molecular data can also contribute
to the estimation of the phylogeny connecting the extant taxa. This model thus
addresses the first shortcoming of node dating, by directly estimating the phy-
logenetic placement of fossils from coded morphological data. It also somewhat
obviates the second shortcoming, since a large component of the uncertainty in a
calibration density aims to describe the unknown time separating the fossil from
the divergence it is associated with. That separation time is effectively directly
modelled in total evidence dating. However Ronquist et al’s approach does not
fully address the final shortcoming of node dating because their model effectively
posits that all fossils are “extinct offshoots”, by representing them as leaves in
the phylogeny2.

4.4.4 Total-evidence dating with fossilized birth-death tree prior

The recently introduced fossilized birth-death (FBD) process (Heath et al. 2013)
points to a promising refinement of total-evidence dating. Using the FBD model
as a tree prior effectively requires a new class of phylogeny – sampled ancestor
trees – to allow for fossil taxa to fall into two categories:

1 fossil taxa that are direct ancestors of other taxa (fossil or extant) in the
total-evidence phylogeny.

2 fossil taxa that represent “extinct offshoots”, with no direct descendents among
the other taxa (fossil or extant).

To exploit the FBD model as a tree prior for Bayesian total-evidence dating, a
Bayesian MCMC algorithm that can sample the space of sampled ancestor trees
is required (Gavryushkina et al. 2014). Using this Bayesian sampling algorithm
(Gavryushkina et al. 2014) along with a substitution model for morphological
data would allow for simultaneously estimation of a total-evidence phylogenetic
tree and its divergence times while also providing automatic classification of all
fossil taxa into the two categories above. Such a framework would address all
the current shortcomings of Bayesian node dating.

2 Although one could perhaps consider a fossil to be a direct ancestor of another leaf if the
posterior estimate of the branch length attaching it to the phylogeny was very short.

D
RA

FT
14-7

-2
014

5 Structured trees and phylogeography

This chapter describes multi-type trees and various extensions to the basic phy-
logenetic model that can account for population structure, geographical hetero-
geneity and epidemiological population dynamics.

5.1 Statistical phylogeography

Phylogeography can be viewed as an approach that brings together phyloge-
netics and biogeography. Phylogeography has a long history and the methods
employed are very diverse. Phylogeographical patterns can be explored within a
single species or between closely related species and these patterns can be used
to address questions of geographical origins and expansions, island biogeography
(e.g. Canary islands, (Sanmart́ın et al. 2008)), range expansions/contractions,
and effects of environmental and climate changes on geographical dispersal and
extent. As with other chapters in this book, we don’t attempt to be comprehen-
sive, but instead point to some relevant material and focus on approaches that
we are familiar with and believe to have promise. We mainly consider methods
that attempt to directly reconcile geographic data with the phylogenetic rela-
tionships of the sampled taxa1. Until recently, due to its simplicity, the most
popular method reconciling discrete geographical locations with phylogenetic re-
lationships (and as a result inferring ancestral locations on the phylogenetic tree)
was maximum parsimony (Maddison and Maddison 2005; Slatkin and Maddison
1989; Swofford 2003; Wallace et al. 2007). However this method doesn’t allow
for a probabilistic assessment of the uncertainty associated with the reconstruc-
tion of ancestral locations. As with the field of phylogenetics, phylogeography
recently experienced a transition to model-based inference approaches. When it
finally came, the struggle for authority between model-based approaches and the
alternatives2 was relatively short compared to the protracted “troubled growth
of statistical phylogenetics” recounted by Felsenstein (Felsenstein 2001). History
1 But note that in some methods described below the sampled taxa may be explicitly

recognised as a statistical sample from underlying populations, of which properties are
inferred, such as levels of gene flow, or geographic isolation.

2 Alternatives to model-based statistical phylogeography are mainly forms of parsimony in
various guises, sometimes ironically called “statistical phylogeography” or “statistical
parsimony”.

D
RA

FT
14-7

-2
014

72 Structured trees and phylogeography

will probably find that the argument in defence of model-based approaches for
phylogeography mounted in the journal Molecular Ecology by Mark Beaumont
and a swath of fellow proponents of ABC and other forms of model-based in-
ference (Beaumont et al. 2010) was the decisive moment. That paper probably
marks the analogous transition in phylogeographic research to the transition
made in phylogenetic research a decade or more before. We will only consider
model-based methods in this chapter. Statistical methods for phylogeography in-
clude those that perform inferences conditional on a tree, and those that jointly
estimate the phylogeny, the phylogeographic state and the parameters of in-
terest. Most of the models described below could be applied in either context.
Although we mainly discuss models for which full Bayesian inference is already
feasible, it is worth noting that Approximate Bayesian Computation (ABC) has
had a large role in the development of model-based phylogeographic inference
(Beaumont et al. 2010). When full Bayesian approaches aren’t available, then
well-implemented ABC approaches using a good choice of summary statistics
can be effective. However when a full Bayesian implementation is available for
the model of interest we would always prefer it, since it will be a lower vari-
ance estimator. In the next sections we will focus on description of the various
models and the necessary augmentation of the time-tree to allow inference under
them. Most of these models are conceptually united by employing inference on
multi-type branching processes.

5.2 Multi-type trees

We define a multi-type tree T of n leaves as a fully-resolved time-tree in which
every internal node represents a coalescence/divergence and where every point on
each edge of the tree is associated with exactly one type s drawn from a fixed set S
of such types. In the context of phylogeography or geographically-structured pop-
ulation genetics, these types can be considered as a set of discrete geographical
locations or demes. However the mathematical description is quite general. Mod-
els that describe (marginal) probability distributions on multi-type trees arise
when considering a diverse range of evolutionary phenomena, including (neutral)
molecular evolution (Felsenstein 1981), migration (Beerli and Felsenstein 2001;
Ewing et al. 2004; Lemey et al. 2009a), single locus non-neutral population ge-
netics (Coop and Griffiths 2004), trait-driven speciation/extinction (Maddison
2007) and compartmental epidemiological dynamics (Palmer et al. 2013; Volz
2012).

Mathematically, we write T = (V,R, t,M). The first three elements are the
usual phylogenetic tree components (defined in Table 2.1): a set of 2n− 1 nodes
V , a set R containing directed edges of the form 〈i, j〉 between nodes i, j ∈ V and
a set of node ages t = {ti|i ∈ V } where ti is the age of node i. The set of nodes
is partitioned into two smaller sets Y and I representing the n−1 internal and n
external nodes, respectively. Every node i ∈ V besides the root r has exactly one

D
RA

FT
14-7

-2
014

5.2 Multi-type trees 73

x

y

z

i

j

tx = 0

ty

tz

ti

tj

〈i,
j〉

ϕ〈i,j〉(t)

t

Figure 5.1 A multi-type tree T = (V,R, t,M) with V = I ∪ Y where I = {x, y, z},
Y = {i, j}, R = {〈x, i〉, 〈y, i〉, 〈i, j〉, 〈z, j〉} and the coalescence times t and type
mappings M are as shown. Here we have selected the type set
D = {blue, red,green,orange}, although this can be composed of the values of any
discrete trait.

parent node ip satisfying tip > ti. Each internal node i ∈ Y has two child nodes
icl and icr satisfying ticl < ti and ticr < ti. The final element in T is unique to
multi-type trees and is defined by M = {ϕ〈i,j〉|〈i, j〉 ∈ E}, where each function
ϕ〈i,j〉 : [ti, tj] → D is piecewise constant and defined such that ϕ〈i,j〉(t) is the
type associated with the time t on edge 〈i, j〉 ∈ R. Such a tree is illustrated in
Fig. 5.1.

5.2.1 Bayesian inference of multi-type trees

There are a variety of approaches to inference of multi-type trees and their
associated parameters. The approach taken is generally dependent on two factors:
(i) the statistical structure of the multi-type tree model and (ii) the aspects of
the multi-type tree model to be inferred. Some multi-type tree models assume
independence of the multi-type process on individual edges of the tree (e.g. the
mugration model described in the following section). This sort of independence
structure can be exploited to enable efficient integration over the number and
times of the type-change events, conditional on the types at the tips of a fixed
time-tree, using the phylogenetic likelihood (Felsenstein 1981). This is especially
useful when the full history of type-changes is a nuisance, and the parameter
of interest is, for example, the associated migration matrix. Whereas models
that don’t assume independence of the branching and type-changing processes

D
RA

FT
14-7

-2
014

74 Structured trees and phylogeography

must generally3 employ MCMC inference on the full multi-type tree state space,
including a random number of type transition events on the time-tree. This
can be computationally intensive, but there have been some recent efforts to
improve the computational efficiency of such algorithms (Vaughan et al. 2014).
More details are provided in the description of the individual models below.

5.3 Mugration models

A mugration model is a mutation or substitution model used to analyze a mi-
gration process. A recent study of Influenza A H5N1 virus introduced a fully
probabilistic ‘mugration’ approach by modeling the process of geographic move-
ment of viral lineages via a continuous time Markov process where the state space
consists of the locations from which the sequences have been sampled (Lemey et
al. 2009a). This facilitates the estimation of migration rates between pairs of lo-
cations. Furthermore, the method estimates ancestral locations for internal nodes
in the tree and employs Bayesian stochastic variable selection (BSVS) to infer
the dominant migration routes and provide model averaging over uncertainty in
the connectivity between different locations (or host populations). This method
has helped with the investigation of the Influenza A H5N1 origin and the paths
of its global spread (Lemey et al. 2009a), and also the reconstruction of the initial
spread of the novel H1N1 human Influenza A pandemic (Lemey et al. 2009b).
However, the mugration models are limited to reconstructing ancestral locations
from among a pre-defined set of locations usually made up of the sampled loca-
tions. As demonstrated by the analysis of the data set on rabies in dogs in West
and Central Africa, absence of sequences sampled close to the root can hinder the
accurate estimation of viral geographic origins (Lemey et al. 2009a). Phylogeo-
graphic estimation is therefore improved by increasing both the spatial density
and the temporal depth of sampling. However, dense geographic sampling leads
to large phylogenies and computationally intensive analyses. Increasingly large
phylogenetic analyses have led to the development of phylogenetic likelihood im-
plementations that can take advantage of the large number of processing cores
on modern graphics processing units (GPUs) (Suchard and Rambaut 2009).

5.4 The structured coalescent

The structured coalescent (Hudson 1990) can also be employed to study phylo-
geography. The structured coalescent has also been extended to heterochronous
data (Ewing et al. 2004), thus allowing the estimation of migration rates be-
tween demes in calendar units (see Figure 5.2). The serial structured coalescent
3 In analyses in which only the transition rate matrix needs to be inferred (without the full

multi-type tree) it is possible to integrate over all possible transition events, which is
computationally less intensive (e.g. Stadler and Bonhoeffer 2013).

D
RA

FT
14-7

-2
014

5.4 The structured coalescent 75

N1 N2

N3

m12

m13

m21

m23m31

m32

Figure 5.2 A simulation of the serially sampled structured coalescent on three demes.
The population size of the three demes is equal (N1 = N2 = N3 = 1000).

was first applied to an HIV dataset with two demes to study the dynamics of
subpopulations within a patient (Ewing et al. 2004), but the same type of infer-
ence can be made at the level of the host population. Further development of the
model allowed for the number of demes to change over time (Ewing and Rodrigo
2006a). MIGRATE (Beerli and Felsenstein 2001) also employs the structured
coalescent to estimate subpopulation sizes and migration rates in both Bayesian
and maximum likelihood frameworks and has also recently been used to investi-
gate spatial characteristics of viral epidemics (Bedford et al. 2010). Additionally,
some studies have focused on the effect of ghost demes (Beerli 2004; Ewing
and Rodrigo 2006b). Although the structured coalescent model is promising,
its application in Bayesian MCMC is computationally demanding because the
standard form of the likelihood calculation (Beerli and Felsenstein 2001; Hudson
1990) requires that the genealogical tree be augmented with all of the unknown
migration events in the ancestry of the sample. The migration events themselves
are typically treated as nuisance parameters and integrated out using MCMC
(Beerli and Felsenstein 2001; Ewing et al. 2004). Recently some effort has been
made to apply uniformization (Fearnhead and Sherlock 2006; Rodrigue et al.
2008) to obtain efficient Bayesian MCMC sampling algorithms for structured
coalescent inference from large serially sampled data sets (Vaughan et al. 2014).
However despite this activity, to our knowledge there are no models explicitly
incorporating population structure, heterochronous samples and nonparametric
population size history yet available.

D
RA

FT
14-7

-2
014

76 Structured trees and phylogeography

One ad hoc solution is the mugration model described in the previous sec-
tion involves modeling the migration process along the tree in a way that is
conditionally independent of the population sizes estimated by the skyline plot
(Lemey et al. 2009a). Thus, conditional on the tree, the migration process is
independent of the coalescent prior. However this approach does not capture the
interaction between migration and coalescence that is implicit in the structured
coalescent, since coalescence rates should depend on the population size of the
deme the lineages are in, leading to a natural interaction between the migra-
tion and branching processes. The mugration method also does not permit the
population sizes of the individual demes to be accurately estimated as part of
the analysis. As we will see in the following section, statistical phylogeography is
one area where the unification of phylogenetic and mathematical epidemiological
models looks very promising.

5.5 Structured birth–death models

The birth–death models introduced in Section 2.4 can also be extended to model
population structure (Kendall 1949). Similarly to the structured coalescent pro-
cess this results in a fully probabilistic approach in which the migration process
among discrete demes depends on the characteristics of the demes.

Such multi-type birth–death models come in different flavors, depending on
the research question posed. When samples are indeed taken from geographical
locations with migration among them, migration events should be occurring
along the branches in the phylogeny. In other cases type changes at branching
events are more reasonable, e.g. when trying to identify superspreaders in an
HIV epidemic (Stadler and Bonhoeffer 2013).

In either case, one can either employ the multi-type trees introduced above (see
Figure 5.3), or integrate out the migration events such that standard BEAST
trees can be used for inference of the migration rates among types.

When applied to virus epidemics, a birth–death tree prior allows the recon-
struction of epidemiological parameters such as the effective reproduction num-
ber R (see Section 5.7). Using a structured birth–death model these parameters
can differ among demes and be estimated separately.

5.6 Phylogeography in a spatial continuum

In some cases its more appropriate to model the spatial aspect of the samples
as a continuous variable. The phylogeography of wildlife host populations have
often been modeled in a spatial continuum by using diffusion models, since vi-
ral spread and host movement tend to be poorly modeled by a small number
of discrete demes. One example is the expansion of geographic range in eastern
United States of the raccoon-specific rabies virus (Biek et al. 2007; Lemey et al.

D
RA

FT
14-7

-2
014

5.6 Phylogeography in a spatial continuum 77

Figure 5.3 Three realizations of the structured coalescent on two demes. The
population size of the two demes is equal (N0 = N1 = 1000) and the migration rates
in both directions are m01 = m10 = 0.00025 in units of expected migrants per
generation.

2010). Brownian diffusion, via the comparative method (Felsenstein 1985; Har-
vey and Pagel 1991), has been utilized to model the phylogeography of Feline
Immunodeficiency Virus collected from the cougar (Puma concolor) population
around western Montana. The resulting phylogeographic reconstruction was used
as proxy for the host demographic history and population structure, due to the
predominantly vertical transmission of the virus (Biek et al. 2006). However, one
of the assumptions of Brownian diffusion is rate homogeneity on all branches.
This assumption can be relaxed by extending the concept of relaxed clock models
(Drummond et al. 2006) to the diffusion process (Lemey et al. 2010). Simula-
tions show that the relaxed diffusion model has better coverage and statistical

D
RA

FT
14-7

-2
014

78 Structured trees and phylogeography

efficiency over Brownian diffusion when the underlying process of spatial move-
ment resembles an over-dispersed random walk.

Like their mugration model counterparts, these models ignore the interaction
of population density and geographic spread in shaping the sample genealogy.
However there has been progress in the development of mathematical theory
that extends the coalescent framework to a spatial continuum (Barton et al.
2010a; Barton et al. 2002, 2010b), although no methods have yet been developed
providing inference under these models.

5.7 Phylodynamics with structured trees

A new area, known as phylodynamics (Grenfell et al. 2004; Holmes and Grenfell
2009), promises to synthesise the distinct fields of mathematical epidemiology
and statistical phylogenetics (Drummond and Rambaut 2007; Drummond et al.
2002; Drummond et al. 2012; Ronquist, Teslenko, et al. 2012; Stadler 2010)
to produce a coherent framework (Kühnert et al. 2014; Leventhal et al. 2013;
Mollentze et al. 2014; Palmer et al. 2013; Rasmussen et al. 2011; Stadler and
Bonhoeffer 2013; Stadler et al. 2013; Volz 2012; Volz et al. 2009; Welch 2011) in
which genomic data from epidemic pathogens can directly inform sophisticated
epidemiological models. Phylodynamics is particularly well-suited to inferential
epidemiology because many viral and bacterial pathogens (Gray, Tatem, et al.
2011) evolve so quickly that their evolution can be directly observed over weeks,
months or years (Kühnert et al. 2011; Pybus and Rambaut 2009; Volz et al.
2013). So far, only part of the promise of phylodynamics has been realised.
Early efforts include: (i) modelling the size of the pathogen population through
time using a deterministic model for the epidemic (Volz 2012; Volz et al. 2009),
(ii) adopting new types of model for the transmission tree itself that are more
suited to the ways in which pathogens are spread and sampled (Stadler et al.
2013) and (iii) coupling this with an approximation to a stochastic compartmen-
tal model for the pathogen population (Kühnert et al. 2014; Leventhal et al.
2013). Only the last two of these approaches have been implemented in software
and made available to practitioners. These efforts are just scratching the surface
of this complex problem. They all make approximations that introduce biases of
currently unknown magnitude into estimates.

Figure 5.4 depicts a multi-type (or structured) SIR process, in which there are
two (coupled) demes, each of which is undergoing a stochastic SIR process. The
number of infected individuals in the two demes is shown as a stochastic jump
process, and the vertical lines emphasise the correspondence between events in
the tree and events in the underlying infected populations. Every internal node
in the tree corresponds to an infection event in the local epidemic of one of the
demes. Likewise every migration between the two demes corresponds with a si-
multaneous increment/decrement of the recipient/donor infected populations. It
is easy to write down the likelihood of this model when both the multi-type tree

D
RA

FT
14-7

-2
014

5.8 Conclusion 79

Figure 5.4 A two-deme phylodynamic time-tree with associated stochastic dynamics of
infected compartments. (With thanks to Tim Vaughan for producing this figure).

and the stochastic trajectories are available. This implies that Bayesian infer-
ence is also available if the MCMC state space is augmented with the epidemic
trajectories of infected individuals. However these trajectories are large objects
of random size (their size is determined by the number of infections, recoveries
and migrations they represent). Efficient inference under these models may be
limited to small outbreaks unless more efficient means to calculate the likelihood
of multi-type trees under this model are discovered.

5.8 Conclusion

In this chapter we have outlined various approaches to modelling population
structure and population dynamics in the context of phylogenetic time-trees.
Most forms of structure entail each branch being associated, at each point in time,
with one specific state from a discrete set of types. Transitions between types
along a branch in the multi-type time-tree form a jump process. In most cases,
branches of the same type, at the same time, are dynamically equivalent. In some
models, the rates of the jump process along a branch in the tree are independent
of the types of all other branches in the tree (e.g. Lemey et al. (2009a)). In
other models, the rates of the jump process are dependent on the states of other
branches that exist in the same time in the tree (e.g. structured coalescent).
Finally in the most complex models described here, the rates of the jump process
co-evolve with coupled stochastic processes (like the epidemic trajectory of the
corresponding infected population in the structured SIR branching process, or

D
RA

FT
14-7

-2
014

80 Structured trees and phylogeography

the allele frequencies at the locus under selection in nonneutral coalescent models
(Coop and Griffiths 2004)). We have not attempted a comprehensive review of
these models because (apart from some notable exceptions) the application of
Bayesian inference to this broad class of models is still in its infancy and it is an
active and fast-moving area of research.

D
RA

FT
14-7

-2
014

Part II

Practice

D
RA

FT
14-7

-2
014

D
RA

FT
14-7

-2
014

6 Bayesian evolutionary analysis by
sampling trees

Molecular sequences, morphological measurements, geographic distributions, fos-
sil and subfossil remains all provide a wealth of potential information about
the evolutionary history of life on earth, and the processes that have generated
Earth’s biodiversity. One of the challenges of modern evolutionary biology is
the integration of these different data sources to address evolutionary hypothe-
ses over the full range of spatial and temporal scales. Evolutionary biology has
seen a transition from being a descriptive, mathematical science to a statistical
and computational science. This transformation began first from an explosion of
molecular sequence data with a parallel development of computational tools for
their analysis. However, increasingly this transformation can be observed in other
aspects of evolutionary biology where large global databases of other sources of
information, such as fossils, geographical distributions and population history
are being curated and made publicly available.

The major goal of the developers of BEAST has been to design and build
software and programming libraries that enable integration and statistical anal-
ysis of all these heterogeneous data sources. After years of development BEAST
is now a robust and popular open-source platform (http://beast2.org). The
BEAST software is a popular Markov chain Monte Carlo (MCMC) samplers for
phylogenetic models and has been downloaded tens of thousands of times. The
program website for version 2 is http://beast2.org. The BEAST users’ group
(http://groups.google.com/group/beast-users) had over 2300 members as
of July 2014. The original BEAST software article (Drummond and Rambaut
2007) is the most viewed paper in BMC Evolutionary Biology of all time (>68,000
views).

An under-appreciated role in modern scientific research is the production of
high-quality and robust software systems that provide for data analysis, hypoth-
esis testing and parameter estimation. Typically development of such software
was traditionally done without major support from research funding, because it
is perceived to be a technical or engineering task, that does not directly increase
our scientific knowledge. However we think this view is short-sighted as software
like BEAST is an enabling technology that improves the level of statistical so-
phistication in evolutionary analyses and enables researchers to pose questions
that could not previously be formally asked of the available data.

This chapter introduces the BEAST software for Bayesian evolutionary analy-

http://beast2.org
http://beast2.org
http://groups.google.com/group/beast-users

D
RA

FT
14-7

-2
014

84 Bayesian evolutionary analysis by sampling trees

sis through a simple step by step exercise. The exercise involves co-estimation of
a gene phylogeny of primates and associated divergence times in the presence of
calibration information from fossil evidence and illustrates some practical issues
for setting up an analysis.

To run through this exercise, you will need the following software at your
disposal, which is useful for most BEAST analyses:

• BEAST - this package contains the BEAST program, BEAUti, TreeAnnota-
tor, DensiTree and other utility programs. This exercise is written for BEAST
v2.2, which has support for multiple partitions. It is available for download
from http://beast2.org/.
• Tracer - this program is used to explore the output of BEAST (and other

Bayesian MCMC programs). It graphically and quantitatively summarizes the
distributions of continuous parameters and provides diagnostic information.
At the time of writing, the current version is v1.6. It is available for download
from http://tree.bio.ed.ac.uk/software/tracer.
• FigTree - this is an application for displaying and printing molecular phy-

logenies, in particular those obtained using BEAST. At the time of writ-
ing, the current version is v1.4.1. You can download FigTree from http:
//tree.bio.ed.ac.uk/software/figtree.

This chapter will guide you through the analysis of an alignment of sequences
sampled from twelve primate species (see Figure 1.2). The goal is to estimate the
phylogeny, the rate of evolution on each lineage and the ages of the uncalibrated
ancestral divergences.

The first step will be to convert a NEXUS file with a DATA or CHARACTERS
block into a BEAST XML input file. This is done using the program BEAUti
(which stands for Bayesian Evolutionary Analysis Utility). This is a user-friendly
program for setting the evolutionary model and options for the MCMC analysis.
The second step is to run BEAST using the input file generated by BEAUti,
which contains the data, model and analysis settings. The final step is to explore
the output of BEAST in order to diagnose problems and to summarize the
results.

6.1 BEAUti

The program BEAUti is a user-friendly program for setting the model parameters
for BEAST. Run BEAUti by double clicking on its icon. Once running, BEAUti
will look similar irrespective of which computer system it is running on. For this
chapter, the Mac OS X version is used in the figures but the Linux and Windows
versions will have the same layout and functionality.

http://beast2.org/
http://tree.bio.ed.ac.uk/software/tracer
http://tree.bio.ed.ac.uk/software/figtree
http://tree.bio.ed.ac.uk/software/figtree

D
RA

FT
14-7

-2
014

6.1 BEAUti 85

Figure 6.1 A screenshot of the data tab in BEAUti. This and all following screenshots
were taken on an Apple computer running Mac OS X and will look slightly different
on other operating systems.

Loading the NEXUS file

To load a NEXUS format alignment, simply select the Import Alignment...
option from the File menu.

The example file called primates-mtDNA.nex is available from the exam-
ples/nexus directory for Mac and Linux and examples\nexus for Windows inside
the directory where BEAST is installed. This file contains an alignment of se-
quences of 12 species of primates.

Once loaded, five character partitions are displayed in the main panel (Figure
6.1). The alignment is divided into a protein coding part and a non-coding part,
and the coding part is divided in codon positions 1, 2 and 3. You must remove
the ‘coding’ partition before continuing to the next step as it refers to the same
nucleotides as partitions ‘1stpos’, ‘2ndpos’ and ‘3rdpos’. To remove the ‘coding’
partition select the row and click the ‘-’ button at the bottom of the table. You
can view the alignment by double clicking the partition.

Link/unlink partition models

Since the sequences are linked (i.e. they are all from the mitochondrial genome
which is not believed to undergo recombination in birds and mammals) they
share the same ancestry, so the partitions should share the same time-tree in
the model. For the sake of simplicity, we will also assume the partitions share
the same evolutionary rate for each branch, and hence the same “clock model”.
We will restrict our modelling of rate heterogeneity to among-site heterogeneity

D
RA

FT
14-7

-2
014

86 Bayesian evolutionary analysis by sampling trees

Figure 6.2 A screenshot of the Partitions tab in BEAUti after linking and renaming
the clock model and tree.

within each partition, and also allow the partitions to have different mean rates
of evolution. So, at this point we will need to link the clock model and tree. In
the Partitions panel, select all four partitions in the table (or none, by default
all partitions are affected) and click the Link Tree Models button and then the
Link Clock Models button (see Figure 6.2). Then click on the first drop-down
menu in the Clock Model column and rename the shared clock model to ‘clock’.
Likewise rename the shared tree to ‘tree’. This will make following options and
generated log files more easy to read.

Setting the substitution model

The next step is to set up the substitution model. First we will temporarily
link the site models in the Partitions panel so that we can change the model
of all partitions simultaneously. Select the Site Models tab at the top of the
main window (we skip the Tip Dates tab since all taxa are from contemporary
samples). This will reveal the evolutionary model settings for BEAST. The op-
tions available depend on whether the data are nucleotides, amino acids, binary
data, or general data. The settings that will appear after loading the primate
nucleotide alignment will be the default values for nucleotide data so we need to
make some changes.

Most of the models should be familiar to you (see Chapter 3 for details). First,
set the Gamma Category Count to 4 and then tick the ‘estimate’ box for the
Shape parameter. This will allow rate variation between sites in each partition
to be modelled. Note that 4 to 6 categories works sufficiently well for most data

D
RA

FT
14-7

-2
014

6.1 BEAUti 87

Figure 6.3 A screenshot of the site model tab in BEAUti.

sets, while having more categories takes more time to compute for little added
benefit. We leave the Proportion Invariant entry set to zero.

Select HKY from the Subst Model drop-down menu (Figure 6.3). Ideally,
a substitution model should be selected that fit the data best for each partition,
but here for the sake of simplicity we use HKY for all partitions. Further, select
Empirical from the Frequencies drop-down menu. This will fix the frequencies
to the proportions observed in the data (for each partition individually, once we
unlink the site models again). This approach means that we can get a good fit to
the data without explicitly estimating these parameters. We do it here simply to
make the log files a bit shorter and more readable in later parts of the exercise.
Finally check the ‘estimate’ box for the Substitution rate parameter and also
check the Fix mean substitution rate box. This will allow the individual
partitions to have their relative rates estimated once we unlink the site models.

Now, return to the ‘Partitions’ panel and unlink the site models so that each
partition has its own named site model with independent substitution model
parameters and relative rate.

Setting the clock model

The next step is to select the Clock Models tab at the top of the main window.
This is where we select the molecular clock model. For this exercise we are going
to leave the selection at the default value of a strict molecular clock, because this
data is very clock-like and does not need rate variation among branches to be
included in the model. To test for clock-likeness, you can (i) run the analysis with
a relaxed clock model and check how much variation among rates are implied
by the data (see coefficient of variation in Chapter 10 for more on this), or
(ii) perform a model comparison between a strict and relaxed clock using path
sampling, or (iii) use a random local clock model (Drummond and Suchard 2010)
which explicitly considers whether each branch in the tree needs its own branch
rate.

D
RA

FT
14-7

-2
014

88 Bayesian evolutionary analysis by sampling trees

Figure 6.4 A screenshot of the Priors tab in BEAUti.

Priors

The Priors tab allows priors to be specified for each parameter in the model.
The model selections made in the site model and clock model tabs, result in the
inclusion of various parameters in the model, and these are shown in the priors
tab (see Figure 6.4).

Here we also specify that we wish to use the Calibrated Yule model (Heled
and Drummond 2012) as the tree prior. The Yule model is a simple model of
speciation that is generally more appropriate when considering sequences from
different species (see Section 2.4 for details). Select this from the Tree prior
dropdown menu.

We should convince ourselves that the priors shown in the priors panel really
reflect the prior information we have about the parameters of the model. We
will specify diffuse “uninformative” but proper priors on the overall molecular
clock rate (clockRate) and the speciation rate (birthRateY) of the Yule tree
prior. For each of these parameters select Gamma from the drop-down menu
and using the arrow button, expand the view to reveal the parameters of the
Gamma prior. For both the clock rate and the Yule birth rate set the Alpha
(shape) parameter to 0.001 and the Beta (scale) parameter to 1000.

By default each of the gamma shape parameters has an exponential prior
distribution with a mean of 1. This implies (see Figure 3.7) we expect some
rate variation. By default the kappa parameters for the HKY model have a log
normal(1,1.25) prior distribution, which broadly agrees with empirical evidence
(Rosenberg et al. 2003) on the range of realistic values for transition/transversion

D
RA

FT
14-7

-2
014

6.1 BEAUti 89

Figure 6.5 A screenshot of the calibration prior options in the Priors panel in BEAUti.

bias. These default priors are kept since they are suitable for this particular
analysis.

Defining the calibration node
We now need to specify a prior distribution on the calibrated node, based on our
fossil knowledge. This is known as calibrating our tree. To define an extra prior
on the tree, press the small + button below list of priors. You will see a dialog
that allows you to define a subset of the taxa in the phylogenetic tree. Once you
have created a taxa set you will be able to add calibration information for its
most recent common ancestor (MRCA) later on.

Name the taxa set by filling in the taxon set label entry. Call it human-chimp,
since it will contain the taxa for Homo sapiens and Pan. In the list below you
will see the available taxa. Select each of the two taxa in turn and press the
>> arrow button. Click OK and the newly defined taxa set will be added in
to the prior list. As this is a calibrated node to be used in conjunction with
the Calibrated Yule prior, monophyly must be enforced, so select the checkbox
marked Monophyletic?. This will constrain the tree topology so that the human-
chimp grouping is kept monophyletic during the course of the MCMC analysis.

To encode the calibration information we need to specify a distribution for the
MRCA of human-chimp. Select the Normal distribution from the drop down
menu to the right of the newly added human-chimp.prior. Click on the black
triangle and a graph of the probability density function will appear, along with
parameters for the normal distribution. We are going to specify a normal distri-
bution centred at 6 million years with a standard deviation of 0.5 million years.
This will give a central 95% range of about 5-7 My. This roughly corresponds to
the current consensus estimate of the date of the most recent common ancestor
of humans and chimpanzees (Figure 6.5). Note that zero is outside 4 standard
deviations of the mean, so it is safe to use a normal distribution instead of a log
normal distribution here.

D
RA

FT
14-7

-2
014

90 Bayesian evolutionary analysis by sampling trees

Setting the MCMC options

The next tab, MCMC, provides more general settings to control the length of
the MCMC run and the file names.

Firstly we have the Chain Length. This is the number of steps the MCMC
will make in the chain before finishing. How long this should be depends on
the size of the data set, the complexity of the model and the quality of answer
required. The default value of 10,000,000 is entirely arbitrary and should be
adjusted according to the size of your data set. For this analysis let’s initially set
the chain length to 1,000,000 as this will run reasonably quickly on most modern
computers (a few minutes).

The Store Every field determines how often the state is stored to file. Storing
the state periodically is useful for situations where the computing environment
is not very reliable and a BEAST run can be interrupted. Having a stored copy
of the recent state allows you to resume the chain instead of restarting from the
beginning, so you do not need to get through burn-in again. The Pre Burnin
field specifies the number of samples that are not logged at the very beginning of
the analysis. We leave the Store Every and Pre Burnin fields set to their default
values. Below these are the details of the log files. Each one can be expanded by
clicking the black triangle.

The next options specify how often the parameter values in the Markov chain
should be displayed on the screen and recorded in the log file. The screen output is
simply for monitoring the program’s progress so can be set to any value (although
if set too small, the sheer quantity of information being displayed on the screen
will actually slow the program down). For the log file, the value should be set
relative to the total length of the chain. Sampling too often will result in very
large files with little extra benefit in terms of the accuracy of the analysis. Sample
too infrequently and the log file will not record sufficient information about the
distributions of the parameters. You probably want to aim to store no more than
10,000 samples so this should be set to no less than chain length / 10000.

For this exercise we will set the screen log to 1000 and the file log to 200. The
final two options give the file names of the log files for the sampled parameters
and the trees. These will be set to a default based on the name of the imported
NEXUS file.

If you are using the Windows operating system then we suggest you add the
suffix .txt to both of these (so, primates-mtDNA.log.txt and primates-mtDNA.trees.txt)
so that Windows recognizes these as text files.

Generating the BEAST XML file

We are now ready to create the BEAST XML file. To do this, select the Save
option from the File menu. Check the default priors, and save the file with an
appropriate name (we usually end the filename with .xml, i.e., Primates.xml).
We are now ready to run the file through BEAST.

D
RA

FT
14-7

-2
014

6.2 Running BEAST 91

Figure 6.6 A screenshot of BEAST.

6.2 Running BEAST

Now run BEAST and when it asks for an input file, provide your newly created
XML file as input. BEAST will then run until it has finished reporting infor-
mation to the screen. The actual results files are save to the disk in the same
location as your input file. The output to the screen will look something like this:

BEAST v2.2.0 Release 2002-2014
Bayesian Evolutionary Analysis Sampling Trees

Designed and developed by
Remco Bouckaert, Alexei J. Drummond, Andrew Rambaut and Marc A. Suchard

Department of Computer Science
University of Auckland

remco@cs.auckland.ac.nz
alexei@cs.auckland.ac.nz

Institute of Evolutionary Biology
University of Edinburgh

a.rambaut@ed.ac.uk

David Geffen School of Medicine
University of California, Los Angeles

msuchard@ucla.edu

Downloads, Help & Resources:
http://beast2.org

Source code distributed under the GNU Lesser General Public License:
https://github.com/CompEvol/beast2/

BEAST developers:
Alex Alekseyenko, Trevor Bedford, Erik Bloomquist, Joseph Heled,
Sebastian Hoehna, Denise Kuehnert, Philippe Lemey, Wai Lok Sibon Li,

D
RA

FT
14-7

-2
014

92 Bayesian evolutionary analysis by sampling trees

Gerton Lunter, Sidney Markowitz, Vladimir Minin, Michael Defoin Platel,
Oliver Pybus, Chieh-Hsi Wu, Walter Xie

Thanks to:
Roald Forsberg, Beth Shapiro and Korbinian Strimmer

Random number seed: 777

12 taxa
898 sites
413 patterns
TreeLikelihood uses beast.evolution.likelihood.BeerLikelihoodCore4
TreeLikelihood uses beast.evolution.likelihood.BeerLikelihoodCore4
TreeLikelihood uses beast.evolution.likelihood.BeerLikelihoodCore4
TreeLikelihood uses beast.evolution.likelihood.BeerLikelihoodCore4
==
Please cite the following when publishing this model:

Remco Bouckaert, Joseph Heled, Denise Kuehnert, Tim Vaughan, Chieh-Hsi Wu, Dong Xie, Marc Suchard, Andrew Rambaut, Alexei J Drummond BEAST 2: A software platform for Bayesian evolutionary analysis. PLOS Computational Biology 10(4): e1003537, 2014

Heled J, Drummond AJ. Calibrated Tree Priors for Relaxed Phylogenetics and Divergence Time...

Hasegawa, M., Kishino, H and Yano, T. 1985. Dating the human-ape splitting by a molecular ...

==
Writing file primate-mtDNA.777.log
Writing file primate-mtDNA.tree.777.trees

Sample posterior ESS(posterior) likelihood prior
0 -7766.9711 N -7688.4922 -78.4789 --

10000 -5527.1265 2.0 -5453.0299 -74.0966 --
20000 -5521.2666 3.0 -5446.4954 -74.7711 --
30000 -5518.7901 4.0 -5442.6380 -76.1520 --
40000 -5514.6676 5.0 -5438.3693 -76.2982 --
50000 -5522.7987 6.0 -5447.3333 -75.4654 --
60000 -5513.6936 7.0 -5440.6748 -73.0187 2m50s/Msamples
...

9990000 -5512.1732 739.1 -5441.1958 -70.9773 2m49s/Msamples
10000000 -5515.2321 734.5 -5437.9182 -77.3138 2m49s/Msamples

Operator Tuning #accept #reject #total acceptance rate
ScaleOperator_treeScaler.t:tree 0.728 75940 281958 357898 0.212
ScaleOperator_treeRootScaler.t:tree 0.581 48659 309158 357817 0.136
Uniform_UniformOperator.t:tree 799104 2781229 3580333 0.223
SubtreeSlide_SubtreeSlide.t:tree 10.01 450154 1339576 1789730 0.252
Exchange_narrow.t:tree 1368 1787165 1788533 0.001
Exchange_wide.t:tree 25 357913 357938 0
WilsonBalding_WilsonBalding.t:tree 14 358742 358756 0
ScaleOperator_gammaShapeScaler.s:noncoding 0.369 2843 8998 11841 0.24
ScaleOperator_KappaScaler.s:noncoding 0.352 2950 8870 11820 0.25
DeltaExchangeOperator_FixMeanMutationRatesOperator 0.340 35796 203561 239357 0.15
ScaleOperator_KappaScaler.s:1stpos 0.420 2713 9297 12010 0.226
ScaleOperator_gammaShapeScaler.s:1stpos 0.419 3266 8762 12028 0.272
ScaleOperator_KappaScaler.s:2ndpos 0.324 2886 8933 11819 0.244
ScaleOperator_gammaShapeScaler.s:2ndpos 0.278 2984 9046 12030 0.248
ScaleOperator_KappaScaler.s:3rdpos 0.541 2622 9246 11868 0.221
ScaleOperator_gammaShapeScaler.s:3rdpos 0.308 3343 8577 11920 0.28
ScaleOperator_CalibratedYuleBirthRateScaler.t:tree 0.249 98194 258404 356598 0.275
ScaleOperator_StrictClockRateScaler.c:clock 0.704 82888 276401 359289 0.231
UpDownOperator_strictClockUpDownOperator.c:clock 0.600 85379 273037 358416 0.238
Total calculation time: 1710.509 seconds

Note that there is some useful information at the start concerning the align-
ments and which tree likelihoods are used. Also, all citations relevant for the
analysis are mentioned at the start of the run, which can easily be copied to
manuscripts reporting about the analysis. Then follows reporting of the chain,
which gives some real time feedback on progress of the chain.

At the end, an operator analysis is printed, which lists all operators used in the

D
RA

FT
14-7

-2
014

6.3 Analyzing the results 93

analysis together with how often the operator was tried, accepted, and rejected
(see columns #total, #accept and #reject respectively). The acceptance rate is
the proportion of times an operator is accepted when it is selected for doing a
proposal. In general, an acceptance rate that is high, say over 0.5 indicates the
proposals are conservative and do not explore the parameter space efficiently. On
the other hand a low acceptance rate indicates that proposals are too aggressive
and almost always result in a state that is rejected because of its low posterior.
Both too high and too low acceptance rates result in low ESS values. An ac-
ceptance rate of 0.234 is the target (based on very limited evidence provided by
Gelman et al. 1996) for many (but not all) operators implemented in BEAST.

Some operators have a tuning parameter, for example the scale factor of a
scale parameter. If the final acceptance rate is not near the target, BEAST will
suggest a new value for the tuning parameter, which is printed in the opera-
tor analysis. In this case, all acceptance rates are good for the operators that
have tuning parameters. Operators without tuning parameters include the wide
exchange and Wilson-Balding operators for this analysis. Both these operators
attempt to change the topology of the tree with large steps, but since the data
supports a single topology overwhelmingly, these radical proposals are almost
always rejected.

6.3 Analyzing the results

The BEAST run produces two logs; a trace log and a tree log. To inspect the
trace log, run the program called Tracer. When the main window has opened,
choose Import Trace File... from the File menu and select the file that BEAST
has created called primates-mtDNA.log (Figure 6.7).

Remember that MCMC is a stochastic algorithm so the actual numbers will
not be exactly the same as those depicted in the figure.

On the left hand side is a list of the different quantities that BEAST has
logged to file. There are traces for the posterior (this is the natural logarithm
of the product of the tree likelihood and the prior density), and the continuous
parameters. Selecting a trace on the left brings up analyses for this trace on
the right hand side depending on tab that is selected. When first opened, the
‘posterior’ trace is selected and various statistics of this trace are shown under
the Estimates tab. In the top right of the window is a table of calculated statistics
for the selected trace.

Select the clockRate parameter in the lefthand list to look at the average
rate of evolution (averaged over the whole tree and all sites). Tracer will plot
a (marginal posterior) histogram for the selected statistic and also give you
summary statistics such as the mean and median. The 95% HPD interval stands
for highest posterior density interval and represents the most compact interval on
the selected parameter that contains 95% of the posterior probability. It can be
loosely thought of as a Bayesian analog to a confidence interval. The TreeHeight

D
RA

FT
14-7

-2
014

94 Bayesian evolutionary analysis by sampling trees

Figure 6.7 A screenshot of Tracer v1.6.

parameter gives the marginal posterior distribution of the age of the root of the
entire tree.

Select the TreeHeight parameter and then Ctrl-click mrcatime(human-chimp)
(Command-click on Mac OS X). This will show a display of the age of the root
and the calibration MRCA we specified earlier in BEAUti. You can verify that
the divergence that we used to calibrate the tree (mrcatime(human-chimp)) has
a posterior distribution that matches the prior distribution we specified (Figure
6.8).

Here are a few questions to consider in light of the Tracer summary:

• What is the estimated rate of molecular evolution for this gene tree (include
the 95% HPD interval)?
• What sources of error does this estimate include?
• How old is the root of the tree (give the mean and the 95% HPD range)?

6.4 Marginal posterior estimates

To show the relative rates for the four partitions, select the mutationRate param-
eter for each of the four partitions, and select the marginal density tab in Tracer.

D
RA

FT
14-7

-2
014

6.5 Obtaining an estimate of the phylogenetic tree 95

Figure 6.8 A screenshot of the 95% HPD intervals of the root height and the
user-specified (human-chimp) MRCA in Tracer.

Figure 6.9 shows the marginal densities for the relative substitution rates. The
plot shows that codon positions 1 and 2 have substantially different rates (0.452
versus 0.181) and both are far slower than codon position 3 with a relative rate of
2.95. The noncoding partition has a rate intermediate between codon positions
1 and 2 (0.344). Taken together this result suggests strong purifying selection in
both the coding and noncoding regions of the alignment.

Likewise, a marginal posterior estimate can be obtained for the gamma shape
parameter and the kappa parameter, which are shown in Figures 6.10 and 6.11
respectively. The plot for the gamma shape parameter suggest that there is
considerable rate variation for all of the partitions with the least rate variation
in the third codon position.

The plot for the kappa parameter (Figure 6.11) shows that all partitions
show considerable transition/transversion bias, but that the third codon po-
sition in particular has a high bias with a mean of almost 29 more transitions
than transversions.

6.5 Obtaining an estimate of the phylogenetic tree

BEAST also produces a posterior sample of phylogenetic time-trees along with
its sample of parameter estimates. These can be summarized using the program
TreeAnnotator. This will take the set of trees and find the best supported one.

D
RA

FT
14-7

-2
014

96 Bayesian evolutionary analysis by sampling trees

Figure 6.9 A screenshot of the marginal posterior densities of the relative substitution
rates of the four partitions (relative to the site-weighted mean rate).

It will then annotate this representative summary tree with the mean ages of
all the nodes and the corresponding 95% HPD ranges. It will also calculate the
posterior clade probability for each node. Run the TreeAnnotator program and
set it up as depicted in Figure 6.12.

The burnin is the number of trees to remove from the start of the sample.
Unlike Tracer which specifies the number of steps as a burnin, in TreeAnno-
tator you need to specify the actual number of trees. For this run, you specified
a chain length of 1,000,000 steps sampling every 200 steps. Thus the trees file
will contain 5000 trees and so to specify a 1% burnin use the value 50.

The Posterior probability limit option specifies a limit such that if a node
is found at less than this frequency in the sample of trees (i.e., has a posterior
probability less than this limit), it will not be annotated. The default of 0.5
means that only nodes seen in the majority of trees will be annotated. Set this
to zero to annotate all nodes.

The Target tree type specifies the tree topology that will be annotated. You
can either choose a specific tree from a file or ask TreeAnnotator to find a tree
in your sample. The default option, Maximum clade credibility tree, finds
the tree with the highest product of the posterior probability of all its nodes.

For node heights, the default is Common Ancestor Heights, which calculates
the height of a node as the mean of the MRCA time of all pairs of nodes in
the clade. For trees with large uncertainty in the topology and thus many clades
with low support, some other methods can result in trees with negative branch

D
RA

FT
14-7

-2
014

6.6 Visualising the tree estimate 97

0 1 2 3 4 5 6

0

1

2

3

4

Gamma shape (α)

D
en

si
ty

Figure 6.10 The marginal prior and posterior densities for the shape (α) parameters.
The prior is in gray. The posterior density estimate for each partition is also shown:
noncoding (orange) and first (red), second (green) and third (blue) codon positions.

lengths. In this analysis, the support for all clades in the summary tree is very
high, so this is no issue here. Choose Mean heights for node heights. This sets
the heights (ages) of each node in the tree to the mean height across the entire
sample of trees for that clade.

For the input file, select the trees file that BEAST created and select a file for
the output (here we called it Primates.MCC.tree). Now press Run and wait for
the program to finish.

6.6 Visualising the tree estimate

Finally, we can visualize the tree in another program called FigTree. Run this
program, and open the Primates.MCC.tree file by using the Open command
in the File menu. The tree should appear. You can now try selecting some of
the options in the control panel on the left. Try selecting Node Bars to get
node age error bars. Also turn on Branch Labels and select posterior to get
it to display the posterior probability for each node. Under Appearance you

D
RA

FT
14-7

-2
014

98 Bayesian evolutionary analysis by sampling trees

0 10 20 30 40

0.
0

0.
1

0.
2

0.
3

Transition/transversion bias (κ)

D
en

si
ty

Figure 6.11 The marginal prior and posterior densities for the transition/tranversion
bias (κ) parameters. The prior is in gray. The posterior density estimate for each
partition is also shown: noncoding (orange) and first (red), second (green) and third
(blue) codon positions.

can also tell FigTree to colour the branches by the rate. You should end up with
something similar to Figure 6.13.

An alternative view of the tree can be made with DensiTree, which is part of
Beast 2. The advantage of DensiTree is that it is able to visualize both uncer-
tainty in node heights and uncertainty in topology. For this particular dataset,
the most probable topology is present in more than 99% of the samples. So, we
conclude that this analysis results in a very high consensus on topology (Figure
6.13).

6.7 Comparing your results to the prior

It is a good idea to rerun the analysis while sampling from the prior to make sure
that interactions between priors are not affecting your prior information. The
interaction between priors can be problematic especially when using calibrations
since it means putting multiple priors on the tree (see Section 9.1 for more

D
RA

FT
14-7

-2
014

6.7 Comparing your results to the prior 99

Figure 6.12 A screenshot of TreeAnnotator.

details). Using BEAUti, you can set up the same analysis under the MCMC
options by selecting the Sample from prior only option. This will allow you
to visualize the full prior distribution in the absence of your sequence data.
Summarise the trees from the full prior distribution and compare the summary
to the posterior summary tree.

Divergence time estimation using “node dating” of the type described in this
chapter has been applied to answer a variety of different questions in ecology
and evolution. For example, node dating with fossils was used in determining
the species diversity of cycads (Nagalingum et al. 2011), analysing the rate of
evolution in flowering plants (Smith and Donoghue 2008), and investigating the
origins of hot and cold desert cyanobacteria (Bahl et al. 2011).

D
RA

FT
14-7

-2
014

100 Bayesian evolutionary analysis by sampling trees

Figure 6.13 A screenshot of FigTree (top) and DensiTree (bottom) for the primate
data.

D
RA

FT
14-7

-2
014

7 Setting up and running a
phylogenetic analysis

In this chapter, we will go through some of the more common decisions involved
in setting up a phylogenetic analysis in BEAST. The order in which the issues are
presented follows more or less the order in which an analysis is set up in BEAUti
for a standard analysis. So, we start with issues involved in the alignment, then
setting up site and substitution models, clock models and tree priors and all of
their priors. Some notes on calibrations and miscellanea are followed by some
practicalities of running a BEAST analysis. Note that a lot of the advice in this
section is rather general. Since every situation has its special characteristics, the
advice should be interpreted in the context of what you know about your data.

7.1 Preparing alignments

Some tips on selecting samples and loci for alignments are discussed in Ho and
Shapiro (2011); Mourier et al. (2012); Silva et al. (2012).

Recombinant sequences: Though under some circumstances, horizontal
transmission was shown not to impact the tree and divergence time estimates
(Currie et al. 2010; Greenhill et al. 2010), the models in BEAST cannot handle
recombinant sequences properly at the time of writing. So, it is recommended
that these are removed from the alignment. There are many programs that can
help identify recombinant sequences, for example 3seq (Boni et al. 2007) or Split-
sTree (Huson and Bryant 2006).

Duplicate sequences: An erroneous argument for removal of duplicate se-
quences in the alignment is that multiple copies will lead to ambiguous trees
and slow down the analysis. However, a Bayesian approach aims to sample all
trees that have an appreciable probability given the data. One of the assump-
tions underlying common Bayesian phylogenetic models is that there is a binary
tree according to which the data was generated. If, for example, three taxa have
identical sequences, it does not mean that they represent the same individual,
or that they are equally closely related in the true tree. All that can be said
is that there were no mutations in the sampled part of the genome during the
ancestral history of those three taxa. In this case, BEAST would sample all three
subtrees with equal probability: ((1,2),3), (1,(2,3)), ((1,3),2). If you summarise
the BEAST output as a single tree (see Section 11.2) you will see some particular

D
RA

FT
14-7

-2
014

102 Setting up and running a phylogenetic analysis

sub-tree over these identical sequences based on the selected representative tree.
But the posterior probability for that particular sub-tree will probably be low
(around 1/3 in our example), since other trees have also been sampled in the
chain.

One of the results of a Bayesian phylogenetic analysis is that it gives an es-
timate of how closely related the sampled sequences are, even if the sequences
are identical. This is possible because all divergences in the phylogeny are esti-
mated using a probabilistic model of substitution. For identical sequences, this
amounts to determining how old the common ancestor of these sequences could
be given that no mutations were observed in their common ancestry, and given
the estimated substitution rate and sequence length. Among a set of identical
sequences, the only divergence with the possibility of significant support would
be their common ancestor. If this is the case then you can confidently report the
age of their common ancestor, but should not try to make any statements about
relationships or divergence times within the group of identical sequences.

Finally, there is a population genetic reason not to remove identical sequences.
Imagine you have sequenced 100 random individuals and among them you ob-
serve only 20 unique haplotypes. You are tempted to just analyse the 20 haplo-
types. However if you are applying a population genetic prior like the coalescent,
then this is equivalent to misrepresenting the data, since the coalescent tree prior
assumes that you have randomly sampled the 20 individuals. If only unique hap-
lotypes are analysed, then it will appear that every random individual sampled
had a unique haplotype. If this was actually the case you would conclude that the
background population from which these individuals came must be very large. As
a result, by removing all the identical sequences you will cause an overestimation
of the population size.

Outgroups: An outgroup is a taxon or set of taxa that is closely related
to the taxa of interest (the ingroup), but definitely has a common ancestor
with the ingroup that is more ancient then the most recent common ancestor of
the ingroup . In unrooted phylogenetic reconstruction the outgroup traditionally
serves as a phylogenetic reference and provides a root for the ingroup (Felsenstein
2004). However adding an outgroup is generally discouraged in Bayesian time-
tree analyses because inclusion of outgroups can introduce long branches which
can make many estimation tasks more difficult. Having said that, a well chosen
outgroup can provide additional information about the ingroup root position,
even when a molecular clock is already being used to estimate a rooted tree.

Nevetheless, outgroups are usually less well sampled than the ingroup, which
violates a basic assumption of many of the standard time-tree priors. Most time-
tree priors assume that the entire tree is sampled with consistent intensity across
all clades at each sampling time. For example this assumption underlies most
coalescent and birth-death priors (but for alternative sampling assumptions see
Höhna et al. (2011)).

Also, in a population genetic context, if the outgroup is from a different species
than the ingroup and the ingroup taxa are from the same species, care should be

D
RA

FT
14-7

-2
014

7.1 Preparing alignments 103

code ambiguities code ambiguities
R A, G B C, G, T
Y C, T D A, G, T
M A, C H A, C, T
W A, T V A, C, G
S C, G N,?,- A, C, G, T
K G, T

Table 7.1 IUPAC-IUB ambiguity codes for nucleotide data.

taken in selecting a prior, and your options may be limited, compared to analyses
restricted to the single-species ingroup. Coalescent based priors are appropriate
for the ingroup, but birth-death based priors are more appropriate for divergences
separating different species in the tree.

Finally, traditionally the outgroup was picked to be the one most genetically
similar to the ingroup, that is, on the shortest branch. However this tends to
select for atypical taxa that are evolving slowly, which has a biasing impact
on the relaxed and strict clock analyses required to do divergence time dating
(Suchard et al. 2003).

So, the simple answer to the question ‘how do I instruct BEAST to use an
outgroup?’ is that you may not want to. A Bayesian time-tree analysis will sample
the root position along with the rest of the tree topology. If you then calculate the
proportion of sampled trees that have a particular root, you obtain a posterior
probability for the root position. However if you do include an outgroup and
have a strong prior belief that it really is an outgroup then you should probably
reflect that in your model by constraining the ingroup to be monophyletic.

Ambiguous data: When a site in a sequence cannot be unambiguously de-
termined, but it is known to be from a subset of characters, these positions in
the sequence can be encoded as ambiguous. For example, for nucleotide data an
‘R’ in a sequence represents the state is either ‘A’ or ‘G’ but certainly not ‘C’ or
‘T’ (see Table 7.1 for the IUPAC-IUB ambiguity codes for nucleotide data). By
default, ambiguous data are treated as unknowns for reasons of efficiency, so in-
ternally they are replaced by a ‘?’ or ‘-’. Both unknowns and gaps in the sequence
are treated the same in most likelihood based phylogenetic analyses. Note there
are alternative approaches that use indels as phylogenetic information (Lunter et
al. 2005; Novák et al. 2008; Redelings and Suchard 2005; Redelings and Suchard
2007; Suchard and Redelings 2006). By treating ambiguities as unknowns the
phylogenetic likelihood (see Section 3.5) can be calculated about twice as fast
as when ambiguities are explicitly modelled. When a large proportion of the
data consists of ambiguities, it may be worth modelling the ambiguities exactly.
This can be done by setting the useAmbiguities=“true” flag on the treelikelihood
element in the XML (see Chapter 13).

However, simulations and empirical analysis suggest that missing data is not
problematic and for sufficiently long sequences taxa with missing data will be
accurately placed in the phylogeny. When the number of characters in the analy-

D
RA

FT
14-7

-2
014

104 Setting up and running a phylogenetic analysis

sis is larger than 100, and up to 95% of the sequence data is missing the tree can
still be reconstructed correctly (Wiens and Moen 2008). Model misspecification
is probably a larger problem in assuring phylogenetic accuracy than missing data
(Roure et al. 2013).

Partitioning: Alignments can be split into various subsets called partitions.
For example, if the alignment is known to be protein encoding, it often makes
sense to split according to codon position (Bofkin and Goldman 2007; Shapiro
et al. 2006). If there is a coding and non-coding part of a sequence, it may
make sense to separate the two parts in different partitions (see for instance the
exercise in Chapter 6). Partitions can be combined by linking site models, clock
models and trees for the partitions of interest. This has the effect of appending
the alignments in the partitions. Which of the various combinations of linking
and unlinking site models, clock models and trees is appropriate depends on the
scenario. For example;

Scenario 1: If you are interested in the gene tree from multiple genes sampled
from a single evolutionarily linked molecule like the mitochondrial genome or
the Hepatitic C virus (HCV) genome, then it is more likely you are interested in
estimating a single phylogenetic tree from a number of different genes, and for
each gene you would like a different substitution model and relative rate.

Scenario 2: If you are interested in a species tree from multiple genes that
are not linked, then a multispecies coalescent (*BEAST; Heled and Drummond
2010) analysis is more appropriate.

Scenario 3: If you are interested in estimating the average birth rate of lineages
from a number of different phylogenetic data sets you would set up a multi-
partition analysis. But, you would have a series of phylogenetic trees that all
share the same Yule birth rate parameter to described the distribution of branch
lengths (instead of a series of population genealogies sharing a population size
parameter). In addition they may have different relative rates of evolution and
different substitution models, which you could set up by having multiple site
models, one for each partition.

If one gene sequence is missing in one taxa then it should be fine to just
use ‘?’ to represent this (or gaps, ‘-’, they are treated the same way). If the
shorter sequences can be assumed to follow a different evolutionary path than
the remainder, it is better to split the sequences into partitions that share a
single tree, but allow different substitution models.

Partitions should not be chosen too small. There should still be sufficient
information in each partition to be able to estimate parameters of interest. One
has to keep in mind that it is not the number of sites in the partition that
matters, but the number of unique site patterns. A site pattern is an assignment
of characters in an alignment for a particular site, illustrated as any column in
the alignment in Figure 1.2.

Methods that automatically pick partitions from data include (Wu et al. 2013)
for arbitrary partitions and (Bouckaert et al. 2013) for consecutive partitions.

Combining partitions: You can combine partitions if they share the same

D
RA

FT
14-7

-2
014

7.2 Choosing priors/model set-up 105

taxa simply by linking their tree, site model and clock model. This has the effect
of concatenating the sequences in the partitions.

7.2 Choosing priors/model set-up

In general, it is very hard to give an answer to the question ‘which prior should I
use?’, because to only proper answer is ‘it depends’. In this section, we make an
attempt to give insight into the main issues around choosing priors. However, it
is important to realise that for each of the pieces of advice given in the following
paragraphs there are exceptions. As a reference, Table 7.2 shows some of the
more common distributions used as priors.

7.2.1 Substitution and site models

One would like to choose a substitution model with as few parameters as possible,
while capturing the evolutionary process as accurately as possible. These two
competing requirements imply a few settings should be tried, where for nucleotide
models HKY is a good starting point and after that try GTR if the HKY analysis
converges satisfactorily. GTR can result in convergence issues in combination
with complex models such as BSP and relaxed clock if all rates are estimated
and the sequence alignment does not have enough variation/information in it.
If there are few site patterns (see Section 3.7) with a particular combination
of characters there may not be enough data to accurately estimate some of the
rates. For example, when there are very few or no A-C transversions, the A-C
rate of the GTR model cannot be accurately estimated, which may show up as
poor convergence of the A-C rate with a low posterior estimate.

Prior on HKY kappa parameter: Rosenberg et al. (2003) established an
empirical distribution of κ from thousands of mammalian gene analyses. It is
clear from this study that with long enough sequences and inter-species compar-
isons you end up with a κ between 1 and 10. But see (Yang and Yoder 1999)
for the relationship between taxon sampling and κ estimation. So, in general a
prior can be used that is generous on the upper side as long as the median is still
within 1-10 range. For example a log normal with M = 1 and S = 1.5 which has
a 95% range of about [0.14,51] and a median of 2.718 could be suitable. How-
ever, note that for within-species comparisons κ can be high with estimated κ

values sometimes exceeding 40 (Yang and Yoder 1999). For example in a survey
of 5140 human mitochondrial genomes an average transition/transversion ratio
(R) of 21.1:1 was found for polymorphisms over 0.1% threshold (Pereira et al.
2009). Because these sequences are very closely related we can ignore multiple-
hits without too much compromise and the κ parameter can be estimated from
R = 21.1 by the following simple conversion:

D
RA

FT
14-7

-2
014

106 Setting up and running a phylogenetic analysis

probability density function parameter effect of increasing range∗
parameter on dis-
tribution

normal mean µ shift to right (−∞, ∞)
N(x|µ, σ) = standard make distribution
1√

2πσ2 e
−(x−µ)2/σ2

deviation σ wider and flatter

lognormal mean M† shift to right [0,∞)
LN(x|M,S) = standard make distribution

1
x
√

2πS2 e
−(ln(x)−M)2/S2

deviation S wider and flatter
offset o shift to right

gamma shape α concentrate into peak [0,∞)
Γ(x|α, β)‡ = at (αβ) once α > 1
1

Γ(α)βk x
α−1e−x/β scale β flattens

offset o shift to right

inverse gamma shape α concentrate into peak [0,∞)
IΓ(x|α, β) = scale β flattens
βα

Γ(α)x
−α−1e−β/x offset o shift to right

beta shape α shift mode left and concentrate [0, 1]
Beta(x|α, β) = shape β shift mode right and concentrate

Γ(α+β)
Γ(α)Γ(β)x

α−1(1.0− x)β−1 offset o shift to right

exponential scale λ increase mean and std.dev. [0,∞]
exp(x|λ) = linearly with λ

1
λ
e−x/λ offset o shift to right

Laplace mean µ shift to right (−∞, ∞)
L(x|µ, b) scale b increase std.dev. linearly

1
2be
−|x−m|/b with b

1/X offset o shift to right [0, ∞)
OneOnX(x)

= 1
x

uniform lower l shift to left (−∞, ∞)
U(x|l, u) = upper u shift to right{

1
u−l if l ≤ x ≤ u
0 otherwise offset o shift to right

Table 7.2 Some common distributions used as prior and some of their properties. Plots
indicate some of the shapes. * If offset is set to non-zero, the offset should be added to
the range. † M is the mean in log space, but the lognormal distribution can also be
specified by its mean in real space, µ. If so, µ is the mean of the distribution. ‡ NB a
number of parametrisations are in use, this shows the one we use in BEAST.

D
RA

FT
14-7

-2
014

7.2 Choosing priors/model set-up 107

κ = R(πA + πG)(πC + πT)
(πAπG + πCπT) . (7.1)

Assuming base frequencies of {πA, πC , πG, πT } = {0.309, 0.313, 0.131, 0.247}
(corresponding to those of the reference human mitochondrial genomes, acces-
sions NC 012920 and J01415) gives a κ of 44.14 by this method.

GTR rates: GTR rates could be fixed when there is an external estimate
available, but this is double dipping if the values were calculated in another
software package from the same data. However, note that relative rates of the
GTR model are normalized in different ways by different software packages so you
cannot necessarily directly compare the absolute values of these relative rates.
You should first make sure both sets of rates are normalized in the same way.
For example many maximum likelihood software packages normalize so that the
rate of G-T is 1, however in BEAST it is normally the rate of C-T changes that
is set to one. Still other programs normalize so that the sum of all six relative
rates is 6 or 1, or other numbers (for example so that the expected output of
the instantaneous rate matrix is 1 - which also requires knowledge of the base
frequencies). Luckily, you can easily compare two sets of relative rates that have
different normalizations by (for example) rescaling one set of relative rates so
that their sum (all 6) is equal to the sum of (all 6 of) the other.

Use GTR to define other models: The GTR model can be used to define
less parameter rich models such as TN93, or even JC69 by linking some of the
parameters. In fact, GTR can be used to define any reversible nucleotide sub-
stitution model by linking parameters and changing the frequency estimation
method. Table 7.3 shows which rates should be shared to get a particular sub-
stitution model. Note that since the rates are normalised in a BEAST analysis
so that on average one substitution is expected in one unit of time, there is one
parameter that can be fixed to a constant value, which is required to assure
convergence. In general, it is a good idea to fix a rate for which there is sufficient
data to get a good estimate in the alignment. Most nucleotide alignments contain
C-T transitions, so the default in BEAST is to fix that rate to 1 and estimate
other rates relative to that.

Number of gamma categories: The number of gamma categories deter-
mines how well rate heterogeneity following a gamma distribution is approxi-
mated by its discretisation into a number of distinct categories. The computa-
tional time required by BEAST is linear with the number of gamma categories,
so a model with 12 rate categories takes 3 times longer than one with 4 rate
categories. For most applications 4 to 8 categories does a sufficiently good job at
approximating a gamma distribution in this context (Yang 1994). A good strat-
egy is to start with 4 categories. If the estimate of the shape parameter turns
out to be close to zero this is an indication that there is much rate heterogene-
ity and a larger number of categories can result in a better fit. One reason for
seeing rate heterogeneity among sites occurs when data is protein coding, and

D
RA

FT
14-7

-2
014

108 Setting up and running a phylogenetic analysis

AOO

α

��

oo β //
__

γ

��@
@@

@@
@@

G??

δ��~~
~~

~~
~ OO

ω

��
C oo ε // T

model α β γ δ ε ω # dimensions

F81 (JC69) 1 1 1 1 1 1 0
HKY85 (K80) a 1 a a 1 a 1
TN93 a b a a 1 a 2
TIM a b c c 1 a 3
GTR (SYM) a b c d 1 e 5

Table 7.3 GTR model can be used to define other nucleotide substitution models by
linking parameters. On the left, the four letters and the rates between them are shown.
On the right, the models with frequencies estimated (models that have their frequencies
not estimated in braces) and the corresponding values, which show which parameters are
linked by sharing the same alphabetic character. The dimensions column shows the
number of parameters that need to be estimated for the model.

sites at codon position 1 and 2 are known to have a lot lower rate than those
on codon position 3 due to conservation of underlying amino acid sequences and
the structure of redundancy in the genetic code. In these cases, partitioning the
data by codon may fit better than gamma categories (Shapiro et al. 2006) and
this model is up to x times faster than using gamma categories, where x is the
number of categories.

Prior for a gamma shape: The default prior for the gamma shape parameter
in BEAST is an exponential with mean 1. Suppose, you would use a uniform
distribution between 0 and 1000 instead. That means that the prior probability
of the shape being > 1 (and smaller than 1000) is 0.999 (99.9%) and the prior
probability of 10 < shape < 1000 is 0.99. As you can appreciate this is a fairly
strong prior on homogeneous rates across sites. Even if the data has strong
support for a shape of say 1.0, this may still be overcome by the prior distribution.
All priors in BEAST are merely defaults, and its impossible ahead of time to
pick sensible defaults for all possible analyses. So its extremely important in a
Bayesian analysis to assess your priors. It is better to pick a good prior, then to
fix the parameter value to the maximum likelihood estimate. Doing the latter
artificially reduces the variance of the posterior distribution by using the data
twice if the estimate came from the same data.

Invariant sites: Without invariant sites (that is, proportion invariant = 0),
the gamma model acts on all sites. When setting the proportion invariant sites to
non-zero, the gamma model will need to explain less rate variation in the remain-
ing variable sites. As a consequence, the remaining sites look less heterogeneous
and the alpha estimate will increase. When invariant sites are estimated an ex-
tra parameter needs to be estimated, injecting extra uncertainty in the analysis,
which may not be always desirable (see model selection strategy in Chapter 10).
The paradox is that for gamma category shapes less than one and short tree
lengths you expect sites that are invariant even though they have non-zero rate.

Frequency model: For the HKY, GTR and many other substitution models

D
RA

FT
14-7

-2
014

7.2 Choosing priors/model set-up 109

it is possible to change the way frequencies are determined for calculating the
tree likelihood. The three standard methods are uniform frequencies (1/4 each
for nucleotide models), empirically estimated from the alignment and estimated
during the MCMC chain. The two simpler models are generally only useful when
you have done some simulations and know the truth. Empirical frequencies are
regarded as pretty good to use, although obviously they are based on a simple
average, so that if you have a lot of identical sequences at the end of a long
branch then the empirical frequencies will be dominated by that one sequence
which might not be representative. Estimated frequencies are a safe choice and
typically converge fast. However, estimating does introduce a bit of uncertainty
in the analysis, which can be detrimental to analysis of parameter rich models.

Fix mean substitution rate: When there are two or more partitions that
are sharing a clock model, for example, when splitting a coding sequence into
its first, second and third codon positions, it can be useful to estimate relative
substitution rates. This is done in such a way that the mean substitution rate is
one, where the mean is weighted by the number of sites in each of the partitions.
So, for two partitions where the first is twice as long as the second, the relative
substitution rate of the first partition is weighted by two thirds, and the second
partition by one third. In this case the first mutation rate can be 0.5 and the
second 2 to give a mean substitution rate of 0.5× 2/3 + 2× 1/3 = 1. Note that
the unweighed mean does not equal 1 in this case.

For a mean substitution rate to be fixed to one, substitution rates of at least
two partitions must be marked as estimated. Note that when the mean substi-
tution rate is not fixed, but substitution rate are marked as estimated and the
clock rate for the partition is estimated as well, the chain may not converge since
the clock and substitution rate may not be identifiable. This happens because
there are many combinations of values of mutation and clock rate that result in
the same tree likelihood.

Typically, BEAST uses substitution rates for relative rates, and clock rate
for absolute rates. But in the end, the actual rate used is the product of these
two. BEAUti just makes it convenient to add a prior on substitution rates (by
checking the Fix substitution rate check box) such that the mean rate of the
substitution rates is one.

7.2.2 Clocks and rates

Which clock model to choose: In most cases, it is a good idea to investigate
how clock-like your data is. One approach is simply to perform both a strict clock
and relaxed clock analysis and let the data decide which one is most appropriate
(see Section 10.1 on interpreting trace logs). If the data turns out to be non-
clock like, the other relaxed clock models can be run and model comparison (see
Section 9.5) used to find the one that performs best. However, for intra-species

D
RA

FT
14-7

-2
014

110 Setting up and running a phylogenetic analysis

data sets its not a good idea to use a relaxed clock (except for some rapidly
evolving viruses) for the following reasons:

Firstly, there is little reason to expect that rates of evolution are changing
from lineage to lineage within a species as the life history characteristics and
DNA repair mechanisms are essentially the same for all individuals.

Secondly, intra-species data sets are generally very data poor (few haplotypes)
so the fewer parameters in your model the better.

Thirdly, in intra-species data sets, the apparent rate variation visible in trees
obtained from an unconstrained analysis can often be explained simply by the
expected stochastic noise in the evolutionary process. Along a branch with a true
length of b, you expect a Poisson random number of mutations (x) with a mean
of E[x] = b∗L (L being sequence length). But its important to realize that this x
will vary from one realisation of the evolutionary process to the next (one sister
branch to the next), so two branches can have different maximum likelihood
lengths, even if their true underlying time and mutation rates are identical. This
is especially true when E[x] is close to zero (see Chapter 4).

In short, for low diversity intra-species data sets there is often little statisti-
cal evidence for rejecting a strict molecular clock, and in that case you should
use a strict molecular clock model. Even with significant evidence, it may be
worth using strict clock by performing other analysis or deciding that model
misspecification is not severe.

Absolute and relative rates: The substitution rate for a partition is the
product of the substitution rate specified for the site model and the clock rate of
the clock model. It is a bit tricky to determine which ones should be estimated
and which should be kept constant. Failure to choose the correct combination
will result in invalid analysis or nonsensical results.

If there is one partition and no timing information in the form of calibration
or tip dates, both substitution rate and clock rate should be fixed to a constant
value. If one or both are estimated, there is no data to inform the value of these
rates, so it will just sample from the prior, which only results in longer time to
convergence (if it does at all) and does not lead to any further insights.

If for a single partition there is some timing information, one of the clock
rate and substitution rate should be estimated, but not both. If none of them
are estimated and the rate implied by sequence data and timing information
differs considerably from the constant rate the tree height might not fit and
poor convergence will result. If both rates are estimated, again poor convergence
will result since the rates are identifiable. Typically, you want the clock rate to
be estimated, which is set by BEAUti by default.

For multiple partitions sharing the same tree, one partition can be chosen as
reference and the remainder can have their substitution rate estimated relative
to the reference partition. Alternatively, all substitution rates can be estimated
and the mean substitution rate can be fixed to be one (Drummond 2002; Pybus
et al. 2003). The mean substitution rate is calculated taking the length of par-
titions in account, so longer partitions will have a bigger impact on the mean

D
RA

FT
14-7

-2
014

7.2 Choosing priors/model set-up 111

substitution rate than shorter ones. This ensures the relative substitution rate
can be interpreted as the mean rate for an individual site in the partition of
interest.

Multiple partitions do not need to share their trees. For each individual tree
in the analysis clock rates can be estimated if there is timing information to
inform the rate. However, per tree at least one substitution rate should be fixed
or alternatively all substitution rates can be estimated and their mean fixed to
one.

Set the clock rate: When a clock rate is available from another source, like
a generalised insect clock rate of 2.3% per million year, you may want to use
this fixed rate instead of estimating it. A rate of 2.3% per million year equals
0.023 substitutions per site per million year (or half that if it was a divergence
rate, that is the rate of divergence between two extant taxa), so when you set
the clock rate to 0.023 it means your time scale will be in millions of years.

Mutation/clock rate prior: If your prior on the rate parameters were
the default ones (currently, BEAUti assumes a uniform distribution with an
extremely large upper bound), and your timing information is not very strong,
then you should expect unreasonable values for rate estimates. This is because
you are sampling an inappropriate default prior, which due to the lack of signal
in the data will dominate the rate estimate. The uniform prior in this context
puts a large proportion of its mass on large rates (larger than one substitution
per unit of time) resulting in nonsensical estimates.

If you have no information whether the units of time are days, months, years
or millions of years, a prior that does not change the distribution when changing
units is appropriate. When changing time units, a uniform prior in log space is
required and a prior that does not change the distribution under transformations
is the so-called Jeffreys’ prior. The 1/X (OneOnX in BEAUti) prior is a Jeffreys’
prior for one-dimensional scale parameters of exponential family distributions.
However, the 1/X prior is not a proper prior since it does not integrate to a
finite value (

∫∞
0 1/x dx =∞). A reasonably sensible option for substitution rate

is a OneOnX prior restricted with an upper and lower bound, which due to its
bounds is a proper prior.

Of course if you want a normal prior in log-space then you can choose the
log-normal prior. The log-normal is recommended rather than normal since the
normal distribution supports values below 0, which makes no sense for a scale
parameter like clock and substitution rate. A log normal with appropriate mean
and 95% HPD bounds is a good choice for substitution rate prior in our opinion.
If you have a number of independent rate estimates from other papers on relevant
taxa and gene regions, you can simply fit a log normal distribution to them and
use that as a prior for your new analysis.

Alternatively, a diffuse Gamma distribution (shape 0.001, scale 1000) can be
appropriate. This distribution has approximately the same shape as the 1/X prior
for a large range, with deviations very close to zero. Likewise, an exponential with
a mean roughly equal to values from the literature could be an option, but this is

D
RA

FT
14-7

-2
014

112 Setting up and running a phylogenetic analysis

a reasonably strong prior, so be sure the literature-based estimates are relevant
to your taxa and gene region. In general, if the data is sufficiently strong and
there is a good calibration, the prior should not have too much impact on the
analysis. The initial value should not matter, but setting it as the mean of the
distribution does no harm.

There is a reasonably good (but broad) prior on the rate of evolution available
for almost any group of organisms with a careful read of the literature. For
example vertebrate mitochondrial evolution tends to be in the range 0.001-1
substitutions per site per million years. While this is a broad prior it certainly
rules out more than it rules in. However if you want to assert ignorance about the
clock rate parameter it is fine to take a broader prior on the clock rate as long as
there is a proper prior on one of the divergences in the tree and a proper prior on
the standard deviation if you use a log normal relaxed clock. The default prior
for standard deviation (exponential with mean 1

3) is suitable for this purpose,
although an even smaller mean on the exponential prior on standard deviation
for closely related taxa can be argued for, and can result in precious reduction
in uncertainty of parameters of interest.

7.2.3 Tree priors

Which tree prior to choose: It always makes sense to investigate the
sensitivity of your estimates to your choice of prior, so we recommend trying
more than one tree prior if you are uncertain which one to use. If you have a
single sequence from each species then the Yule process is the simplest tree prior
to choose in the first instance. The Yule model is a simple pure birth process with
a single parameter, the birth rate λ. Including the potential for both lineage birth
and lineage extinction gives the two parameter constant-rate birth-death model,
which has been suggested to be an appropriate “null model” for phylogenetic
diversification (Mooers and Heard 1997; Nee 2001; Nee et al. 1994a). However
unless all extant species are included in the phylogeny, an additional sampling
fraction, representing the proportion of extant species present in the phylogeny
should also be included as a random variable in the model (Stadler 2009; Yang
and Rannala 1997).

The sampling proportion can make a big difference to the prior if it is very
small (Stadler 2009). But if we put the sampling proportion aside for a moment
then Yule versus birth-death is not as big a difference in priors as Yule versus
coalescent. The coalescent prior varies quadratically with the number of lineages
spanning an inter-node time (E[∆tk] ∝ exp

(
−
(
k
2
))

where ∆tk the length of time
spanned by the kth interval in the tree) whereas the Yule prior varies linearly
(E[∆tk] ∝ exp(−k)), see Figure 7.1.

The Yule prior assumes that the birth rate of new lineages is the same every-
where on the tree. It would assume that the birth rate of new lineages within the
set of taxa of interest, say C. sinensis, is the same as between different species
in your out-group. This assumption may not be appropriate. A relaxed clock

D
RA

FT
14-7

-2
014

7.2 Choosing priors/model set-up 113

Figure 7.1 Left, a simulated Yule tree and right a simulated coalescent (with constant
population) tree with 20 taxa. Note, coalescent trees have much shorter branches near
the tips.

also allows quite some scope for changes in rate from branch to branch, so one
possibility is that the relaxed clock is assigning slow rates within C. sinensis so
that longer branches (in time) can be assigned, in doing so fitting the Yule prior
better.

The coalescent tree prior is for trees relating a small sample of individuals from
a large background population, where the background population may have ex-
perienced changes in population size over the time period that the tree spans.
The coalescent is more flexible and so may accommodate a wider range of di-
vergence time distributions. However, the parameters of the coalescent will be
difficult to interpret if your sequences come from different species.

The skyline and skyride priors are coalescent priors that are useful for complex
dynamics. The parametrised coalescent priors like the constant and exponential
coalescent are useful when you want to estimate specific parameters, for example
the growth rate. However, you have to be confident that the model is a good
description of the data for such estimates to be valid.

Note that some priors, such as the Yule prior, assume all tips are sampled at
the same time. These priors are not available for use with serially sampled data,
and the birth-death-skyline plot can be used instead (Stadler et al. 2013).

Prior for Yule birth rate: If you are using the Yule tree prior the birth
rate λ needs to be specified, which governs the rate that species diverge. This
rate, in turn, determines the (prior) expected height of the species tree (denote
by r). The formula connecting these is two quantities is

λ = 1
r

(
n−1∑
k=1

k

n(n− k)

)

where n is the number of species. So, if you have some information about expected
root height, you can use this to specify the λ value giving the desired root height.

If no information on root height is available, then a uniform prior on the Yule
birth rate hyper-parameter λ is just fine. Note that in practice for *BEAST
analysis only we found that 1/X works better for a birth rate prior. Such a prior
puts higher preference on lower birth rates, hence higher species trees. But the

D
RA

FT
14-7

-2
014

114 Setting up and running a phylogenetic analysis

height of the species tree is limited from above by corresponding gene trees, which
each have their own coalescent prior. As a result the species tree will “snugly” fit
the gene trees, while with a uniform birth rate prior it might linger lower than
the gene trees would justify.

Prior for constant population size: When using the constant-size coales-
cent tree prior, a choice needs to be made for the prior on the constant population
size hyper-parameter. If you have prior information, an informative prior, that
is, not uniform with non-informative bounds is always more preferable.

Otherwise, the 1/X prior (which for the population size parameter is also the
Jeffrey’s prior) is a good non-informative prior for population size. We showed
in Table 3 of (Drummond et al. 2002) that this prior leads to good recovery of
the population size in terms of frequentist coverage statistics, but we were not
attempting to provide a general result in that paper. It is well known that the
estimation of the growth rate for exponentially growing populations is generally
positively biased (especially when using a single locus (Kuhner et al. 1998))
and we do not know of any work that has been done on appropriate priors for
that parameter. Having said 1/X is okay for θ, it is not if you want to do path
sampling (see Section 9.5).

Number of BSP groups: The number of groups for a BSP prior determines
how well the demographic function can be approximated. When there is only a
single group, BSP becomes equivalent to a simple constant population size model.
The maximum number of groups is one per internal node and for every interval
between two coalescent events a population size is estimated. In this case, a large
number of parameters are estimated and these estimates will be very noisy. So,
the choice for the number of groups typically needs to be in between these two
extremes. Too few groups results in loss of signal of the demographic history,
and too many groups result in noisy estimates that are difficult to interpret.

The optimal value depends on the data at hand and the demographic history
being inferred. A good strategy is to start with five groups and if more resolution
is required increase the number of groups in subsequent runs. However, choosing
more than twenty groups is not recommended. Alternatively, use EBSP, which
supports estimation of the number of change-points from the data as well as use
of multiple loci (Heled and Drummond 2008) (see Section 2.3.1).

Different behaviour for different tree hyper-priors: Different tree hyper-
parameter priors can result in differences in rate estimates. For example, a uni-
form prior on Yule birth rate works the way one expects while the uniform prior
on the population size of a constant-size coalescent prior does not. The reason
for this lies in the way in which the different models are parametrised. If the
coalescent prior had been parametrised with a parameter that was equal to one
over the constant population size, then a uniform prior would have behaved as
expected (in effect the Jeffreys prior is performing this re-parametrisation). Con-
versely if the Yule tree model had been parametrised with a parameter equal to
one over the birth rate (which would be proportional to the mean branch length)

D
RA

FT
14-7

-2
014

7.2 Choosing priors/model set-up 115

it would have behaved unexpectedly in a similar way to coalescent prior with a
uniform prior on the population size.

Before you start thinking that we parametrised the coalescent prior incorrectly,
it is important to realise there is no correct parametrisation for all questions. For
some hypotheses one prior distribution is correct, for others another prior distri-
bution works better. The important thing is to understand how the individual
marginal priors interact with each other. For an analysis involving divergence
time dating and rate estimation one should be aware that the tree prior has the
potential to influence the rate estimates and vice versa.

Finally, if you have proper prior distributions on divergence times and rates
(like gamma or log-normal distributions with moderate standard deviations) then
most of these effects become neglible.

7.2.4 Calibrations

Choosing a prior for a calibration: If you have some idea about where 90%
or 95% of the probability for a calibration may be, that is, you are 95% sure that
the date must be between X and Y, or you are 95% sure that the divergence
date is not older than X, then BEAUti can help in choosing the correct prior.
It can show that distribution in a graph, and reports the 2.5% and 5% upper
and lower tails of the distribution. So, you can select the parameters of a prior
by matching the 90% or 95% intervals of your prior information with the tails
of the distribution.

Note that a calibration based on a previous analysis of the same data, for
example, by a non-BEAST analysis, will lead to inappropriate high confidence
in the estimated divergence ages. The effect of basing such a calibration on the
same data would be that intervals would become artificially small. To illustrate
the error of such an analysis, imagine what would happen when the analysis
would be done with a calibration informed by a previous BEAST run and this
process was repeated a few times. The divergence times estimates could be made
arbitrarily narrow and effectively false and untrustworthy.

An alternative is to base priors on an independent dataset. This can be effective
when there is not enough temporal information in the data set you are working
with. The estimate of the clock rate of the first dataset can be used to put a
prior on the clock rate of the dataset of interest. You can then approximate this
distribution with a normal or gamma distribution and use it as a prior. However,
it is important to make sure the data sets are independent and have no sequences
in common and the samples are indeed independent, that is, the sequences from
the data sets are not para- or polyphyletic in joint phylogeny.

Divergence times are scale parameters, so they are always a positive number.
Therefore you should use priors that are appropriate for scale parameters like
log-normal which is a density that is only defined for positive values. Do not use
normal distributions for calibration densities unless they are sufficiently narrow
that they do not have any appreciable probability mass near zero. Divergence

D
RA

FT
14-7

-2
014

116 Setting up and running a phylogenetic analysis

times are defined only on the positive number line, and so your prior should be
as well.

If you use a calibration distribution that provides support for negative di-
vergence times, like the normal distribution does, this creates a calibration that
basically does not rule out arbitrarily small divergences. When sampling from the
prior, this will pull the tree down giving rise to collapsed branches. Anecdotally,
this problem usually manifests itself if zero is within about four standard devia-
tions of the mean of a normally distributed calibration. This phenomenon never
shows up with a log-normal calibration distribution and any normally distributed
divergence calibration can be easily replaced with a log-normal distribution that
has a similar shape but no probability below zero. The log-normal distributions
becomes a bell-shaped distribution by setting the standard deviation low.

Another method for determining the shape of the distribution is through the
CladeAge package (Matschiner and Bouckaert 2013). It requires specification of
the net diversification rate, turnover rate and sampling rate. Together with the
interval that specifies the age of a fossil, an empirical distributions for calibrations
can be calculated .

Because the calibrations, the tree and its prior and all other priors such as
monophyly constraints are dependent they interact with each other in unpre-
dictable ways. For example, a calibration on the MRCA time of a clade limiting
its height has an impact on any calibration on a subclade that has tails exceeding
the limit of the parent clade. Therefore, when doing divergence time dating in
BEAST, always run your analysis without data to see how the tree prior and
calibrations interact. This can be done by selecting the sample from prior option
in BEAUti. This way, you can determine what your actual marginal prior distri-
butions on divergence times are. You might notice that the calibration densities
combined with the tree prior (Yule, or coalescent) can yield surprising results,
and you might need to change your calibrations accordingly.

When calibrating and using the Yule prior, a correction is available in the
“calibrated Yule prior” (Heled and Drummond 2012) that is effective when a
single calibration is required. With more than one calibration, the calibrated
Yule prior implemented in BEAST can become computationally burdensome,
and this is an active area of research.

Multiple calibrations: When using the strict clock, a single calibration tends
to be sufficient, assuming there is sufficient sequence data. If you decide to use
multiple calibrations, then BEAST deals with them by sampling the tree topol-
ogy and branch lengths that give good posterior probabilities, that is, it samples
a region of the parameter space proportional to its posterior probability. If the
multiple calibrations and the sequence data are inconsistent with each other, then
some kind of compromise will result. This may mean that some of the marginal
posterior distributions of the divergence times may end up far away from their
prior distributions. As noted before, multiple calibrations can interact with each
other, so make sure that the joint effect of the calibrations represent your prior
information by running BEAST without data.

D
RA

FT
14-7

-2
014

7.3 Miscellanea 117

Calibration and monophyly: Depending on the source of information used
for informing a calibration, often the clade to which the calibration applies is
monophyletic. If the clade is not monophyletic, the MCMC chain may mix poorly.
One reason this happens is due to taxa moving in and out of the clade defined
by the internal node that is calibrated. Whenever a taxon moves in during the
MCMC chain, the clade “tries” to accommodate the new taxon often by in-
creasing the height of the clade. When the taxon moves out again, there will be
some pressure to reduce the clade height. When a calibration is set to be mono-
phyletic, there can be no taxa moving in and out of the constrained clade, which
results in a much better behaved chain. So, we recommend to make calibrations
monophyletic when you can.

Calibration root height vs fixing clock rate: It can happen that there is
no timing information, or the timing information is of no interest to the analysis,
for example, if only the tree topology is required, or the geographical origin in
a phylogeographical analysis is of interest. It is tempting to put a calibration on
the root of the tree, perhaps with a small variance. However, if timing is of no
interest, it might be better to fix the clock rate or put a strong prior on the rate
because the MCMC chain will mix a lot better that way. This is because some
operators act to change the topology by changing the root node height, which is
hampered by a tight calibration on the root. A strong prior on the rate will not
interfere with such operators.

7.3 Miscellanea

Installing and managing packages: Packages, also known as plug-ins or
add-ons, contain extensions of BEAST, such as the reversible jump substitu-
tion model. For desktop computers, installing and managing plug-in is best done
through BEAUti, which has an package management dialog under the File/-
Manage packages menu. There is a command line utility called packagemanager
to manage packages on server computers. More operating system specific infor-
mation and on where packagers are installed is available on the BEAST wiki.

Log frequency: In order to prevent log files from becoming too large and
hard to handle, the log frequency should be chosen so that the number of states
sampled to the log file does not exceed 10000. So, for a run of 10 million, choose
1000 and for a run of 50 million, choose 5000 for the log frequency. Note that to
be able to resume it is a good idea to keep log intervals for trace logs, tree logs
and the number of samples between storing the state all the same. If they differ
and an MCMC run is interrupted, log files can be of different lengths and some
editing may be required (see below).

Operator weights: There can be orders of magnitude difference between
operator weights. For example, the default weight for the uniform operator which
changes node heights in a tree without changing the topology is 30, while the

D
RA

FT
14-7

-2
014

118 Setting up and running a phylogenetic analysis

default weight for the exchange operator on frequencies is just 0.01. This is
because in general the height of nodes in trees is hard to estimate hence requires
many moves, while the frequencies for substitution models tend to be strongly
driven by alignment data in the analysis. In BEAUti, you can change operator
weights from the defaults. Typically, the defaults give reasonable convergence
for a wide range of problems. However, if you find that ESSs are low for some
parameters while many others are high, generally you want to increase the weight
on operators that affect parameters that are getting very low ESSs to try and
equalize out the sampling. Weights for operations on the tree should increase if
the number of taxa in the tree increases. Whether the increase should be linearly
or sub-linearly requires further research.

Fixed topology: The topology can be kept constant while estimating other
parameters for example node heights. This can be done in BEAUti by setting
the weights of operators that can change the topology of the tree to zero. Alter-
natively, the operators can be removed from the XML. The standard operators
that change the tree topology are subtree-slide, Wilson-Balding and the narrow
and wide exchange operators. For *BEAST analysis, the node-reheight operator
affects the topology of the species tree.

Newick starting tree: A user defined starting tree can be provided by
editing the XML. Using the beast.util.TreeParser class, a tree in Newick
format can be specified. There are a few XML files in the examples directory
that show how to do this. BEAST only accepts binary trees at the moment,
so if your tree has polytomies you have to convert the tree to a binary tree
and create an extra branch of zero length. For example, if your polytomy has
three taxa and one internal node, say (A:0.3,B:0.3,C:0.3), then the binary tree
((A:0.3,B:0.3):0.0,C:0.3) is a suitable representation of your tree.

Multi epoch models: When there is reason to believe that the method
of evolution changes at different time intervals, for example because part of the
time frame is governed by an ice age, a single substitution model may not be
appropriate. In such a situation, a multi epoch model (Bielejec et al. 2014), also
known as boom bust model can be useful. In the BEASTlabs package there is an
implementation of a EpochSubstitutionModel where you can specify different
substitution models at different time intervals.

7.4 Running BEAST

Random number seed: When starting BEAST, a random number seed can
be specified. Random number generators form a large specialised topic, see for
example Knuth (1997). A good random number generator should not allow you
to predict what a sequence will be for seed B if you know the sequence for seed
A (even if A and B are close). BEAST uses the Mersenne prime twister pseudo
random number generator (Matsumoto and Nishimura 1998), which is considered
to be better than linear congruential generators that are the default in many

D
RA

FT
14-7

-2
014

7.4 Running BEAST 119

programming languages, including Java. A pseudo random number generator
produces random numbers in a deterministic way. That means that if you run
BEAST with the same seed, the outcome will be exactly the same. It is a good
idea to run BEAST multiple times so that if can be checked these runs all
converge on the same estimates. Needless to say, the runs should be started with
different seeds, otherwise the runs will all show exactly the same result.

Which seed you use does not matter and seeds that only differ by a single unit
result in completely different sequences of random numbers being generated. By
default, BEAST initialises a seed with the number of milliseconds since 1970 at
the time that you start BEAST according to the clock on your computer. If you
want a run you can exactly reproduce you should override this with seed number
of your choice.

Stopping early: Once a BEAST run is started, the process can be stopped
due to computer failure or by killing the process manually because the ESSs
indicated by analysing partial log files are already satisfactory. If this happens,
you should check that the log files were properly completed, because the program
might have stopped in the middle of writing the file. If a log line is corrupted,
the complete line should be removed. For some post processing programs like
Tracer when doing a demographic reconstruction it is important for the tree file
to be properly finalised with a line containing ”End;”. Failing to do so may result
in the analysis being halted.

Resuming runs: A state file representing the location in sample space and
operator tuning parameters can be stored at regular intervals so that the chain
can be resumed when the program is interrupted due to a power failure or un-
expected computer outage. BEAST can resume a run using this state file, which
is called the same as the BEAST XML file name with .state appended at the
end, like beast.xml.state for beast.xml. When resuming, the log files will be
extended from the point of the last log line. Log files need to end in the same
sample number, so it is recommended that the log frequency for all log and tree
files is kept the same, otherwise a run that is interrupted requires editing of the
log files to remove the last lines so that all log files end with the same sample
number as the shortest log. The same procedure applies when a run is inter-
rupted during the writing of a log file and the log files became corrupted during
that process.

Another way to use the state file is to help getting through burn-in, which
can be especially useful for a large analysis. First, run an analysis say with
a calibration, then change to model by removing the calibration. The second
analysis can now use the state of the first analysis if the state file is available,
but the trace log and tree log files are removed and BEAST is run using the
resume option. In this example, the state space of the first and second analysis
are the same. If the state spaces are different, for example, when the first analysis
is strict clock and the second is a relaxed clock analysis, an extra step is required.
First run the first analysis as before, giving us the first state file. Then start the
second analysis till the point that the state file is written, then stop the run

D
RA

FT
14-7

-2
014

120 Setting up and running a phylogenetic analysis

and remove the log files. Now, in a text editor, the information of the first state
file for those parameters that the analysis have in common (such as the tree)
can be pasted into the second state file. When resuming the second analysis
with the second state file, it should show a much better posterior than before,
and should probably be closer to getting through burn-in saving some time and
computational energy.

Beagle: Beagle (Ayres et al. 2012; Suchard and Rambaut 2009) is a library
for speeding up tree likelihood calculations that can result in dramatic improve-
ments in runtime. You have to install beagle separately, and it depends on your
hardware and data how much performance difference you will get. Beagle can
utilise some types of graphics processing units, which can significantly speed up
tree likelihood calculations, especially with large data sets or large state spaces
like codon models. There are a considerable number of beagle options that can
give a performance boost, in particular switching off scaling when there are not a
large number of taxa, choosing single precision over double precision calculations
and choosing the SSE version over the CPU version of beagle. These options may
need some extra command line arguments to BEAST. To see which options are
available, run beast with the -help option. It requires a bit of experimentation
with different beagle settings to find out what gives the best performance. It
actually depends on the data in the analysis and the hardware you use.

Note that some models such as the multi epoch substitution model and stochas-
tic Dollo model (Nicholls and Gray 2008) and multi state stochastic Dollo (Alek-
seyenko et al. 2008) are not supported by Beagle. Also, the tree-likelihood for
SNAPP (Bryant et al. 2012) is not currently supported by beagle.

D
RA

FT
14-7

-2
014

8 Estimating species trees from
multilocus data

The increasing availability of sequence data from multiple loci raises the question
on how to determine the species tree from such data. It is well established that
just concatenating nucleotide sequences results in misleading estimates (Degnan
and Rosenberg 2006; Heled and Drummond 2010; Kubatko and Degnan 2007).
There are a number of more sophisticated methods to infer a species phylogeny
from sequences obtained from multiple genes. This chapter starts with an ex-
ample of a single locus analysis to highlight some of the issues, then details the
multi-species coalescent. The remainder describes two multi-locus methods for
inferring a species phylogeny from DNA and SNP data respectively. Though even
multi-species coalescent may suffer from detectable model misspecification (Reid
et al. 2013) it has not be shown that it is worse than concatenation.

8.1 Darwin’s finches

Consider the situation where you have data from a single locus, but have a
number of gene sequences sampled from each species and you are interested
in estimating the species phylogeny. Arguably, even in this case, an approach
that explicitly models incomplete lineage sorting is warranted. The ancestral
relationships in the species tree can differ considerably from those of an individual
gene tree, due (among other things) to incomplete lineage sorting. This arises
from the fact that in the absence of gene flow the divergence times of a pair of
genes sampled from related species must diverge earlier than the corresponding
speciation time (Pamilo and Nei 1988). More generally, a species is defined by the
collection of all its genes (each with their own history of ancestry) and analyzing
just a single gene to determine a species phylogeny may therefore be misleading,
unless the potential discrepancy between the gene tree and the species tree is
explicitly modeled.

For example, consider a small multiple sequence alignment of the mitochon-
drial control region, sampled from 16 specimens representing four species of
Darwin’s finches. The variable columns of the sequence alignment are presented
in Figure 8.1.

The alignment is comprised of three partial sequences from each of Camarhynchus
parvulus and Certhidea olivacea, four from Geospiza fortis and five from G. mag-

D
RA

FT
14-7

-2
014

122 Estimating species trees from multilocus data

Figure 8.1 The 105 variable alignment columns from the control region of the
mitochondrial genome sampled from a total of 16 specimens representing four species
of Darwin’s finches. The full alignment is 1121 nucleotides long.

nirostris (Sato et al. 1999). The full alignment has 1121 columns and can be
found in the examples/nexus directory of the BEAST2 distribution. To ana-
lyze this data we use an implementation of the multispecies coalescent (known
as *BEAST, pronounced ”star-beast”, see Section 8.3 below for details) with
the HKY substitution model and a strict molecular clock. Figure 8.2 shows a
summary of the posterior distributions for the gene tree and the species tree.

The most probable species tree, shown at the bottom of Figure 8.2, is sup-
ported by about two-thirds of the posterior. The alternative topologies are shown
with intensity proportional to their support at the top of the figure. This is de-
spite the fact that in the gene tree a clade containing all the Geospiza sequences
has almost 100% support. There is some uncertainty to whether C. parvulus
descended from the root but almost none on the monophyly of the Geospiza
sequences. This example is especially illustrative of how the gene tree is not
necessarily the same as the species tree, even if there is only a single gene in
the analysis. The taxon labels are colored by species in the gene tree in Figure
8.2. So, though the sequences for G. fortis and G. magnirostris together form a
monophyletic clade in the summary gene tree, the species do not fall into two
clear monophyletic subclades. In fact the G. magnirostris and G. fortis sequences

D
RA

FT
14-7

-2
014

8.1 Darwin’s finches 123

AF_110423_C_olivacea

AF_109015_C_olivacea

AF_109025_C_olivacea

AF_109060_C_parvulus

AF_109018_C_parvulus

AF_109019_C_parvulus

AF_109037_G_magnirostris

AF_109052_G_fortis

AF_109036_G_magnirostris

AF_109016_G_magnirostris

AF_109034_G_magnirostris

AF_109027_G_fortis

AF_109028_G_fortis

AF_109053_G_fortis

AF_109035_G_magnirostris

AF_109067_G_magnirostris

fortis

magnirostris

parvulus

olivacea

AF_110423_C_olivacea

AF_109025_C_olivacea

AF_109015_C_olivacea

AF_109060_C_parvulus

AF_109019_C_parvulus

AF_109018_C_parvulus

AF_109037_G_magnirostris

AF_109067_G_magnirostris

AF_109035_G_magnirostris

AF_109036_G_magnirostris

AF_109016_G_magnirostris

AF_109034_G_magnirostris

AF_109053_G_fortis

AF_109028_G_fortis

AF_109052_G_fortis

AF_109027_G_fortis

AF_109015_C_olivacea

AF_110423_C_olivacea

AF_109025_C_olivacea

AF_109016_G_magnirostris

AF_109034_G_magnirostris

AF_109027_G_fortis

AF_109028_G_fortis

AF_109036_G_magnirostris

AF_109052_G_fortis

AF_109037_G_magnirostris

AF_109035_G_magnirostris

AF_109053_G_fortis

AF_109067_G_magnirostris

AF_109018_C_parvulus

AF_109019_C_parvulus

AF_109060_C_parvulus

Figure 8.2 Single locus analysis of Darwin’s finches. Top left, gene trees, top middle
species trees, top right shows the gene trees when the species tree is fixed and
sampling from the prior, which shows the prior puts a preference on trees that are as
low as the species tree allows. Bottom show how the summary tree of the gene trees
fits in the species tree. Branch width of the species tree indicates population sizes.

are mixed together in in an arrangement known as paraphyly, and there is no
obvious species boundary visible from direct inspection of the gene tree.

A standard non *BEAST analysis of this data results in approximately the
same tree as the gene tree shown in Figure 8.2.

When the species tree and population sizes are fixed, a sample from the prior
distribution on gene trees is possible in a *BEAST analysis. Figure 8.2 shows
three gene trees samples from this prior, with the species tree set to the median
estimate from a posterior analysis of the Darwin’s finches data. It can be seen
that with the estimated divergence times and population sizes, paraphyly is
expected for the two Geospiza species, whereas monophyly is the tendency for
both C. olivacea and C. parvulus.

The posterior point estimate of the gene tree enclosed in the corresponding
species tree estimate is shown at the bottom of figure 8.2. This shows the sum-
mary tree for the gene tree fitted in the summary tree for the species tree. Branch
widths of the species tree indicate population sizes estimated by *BEAST, show-

D
RA

FT
14-7

-2
014

124 Estimating species trees from multilocus data

ing increase in population sizes with time going forward for all the species. The
clades for C. parvulus and C. olivacea are each monophyletic, lending support for
the older estimates of their corresponding speciation times relative to population
sizes.

8.2 Bayesian multispecies coalescent model from sequence data

The multispecies coalescent model is described in Section 2.5.1. In an empirical
study (Leaché and Rannala 2011) it was shown Bayesian methods for species
tree estimation perform better than maximum likelihood and parsimony. In a
Bayesian setting the probability of the species tree S given the sequence data
(D) can be written (Heled and Drummond 2010):

f(g, S|D) = f(S)
Pr(D)

m∏
i=1

Pr(Di|gi)f(gi|S), (8.1)

where D = {D1, . . . , Dm} is the set of m sequence alignments, one for each of the
gene trees, g = {g1, . . . , gm}. The term Pr(Di|gi) is a standard tree likelihood,
which typically subsumes a substitution model, site model, and clock model
for each of the individual genes (see Chapters 3 and 4 for details). f(gi|S) is
the multi-species coalescent likelihood, which is a prior on a gene tree given the
species tree and f(S) is the prior on the species tree (see Section 2.5.1 for details).

The species tree prior f(S) can be thought of as consisting of two parts: a
prior on the the species time tree (gS), f(gS), and the a prior on population
sizes, f(N), together giving f(S) = f(gS)f(N). The species time tree prior
f(gS) is typically the Yule or birth-death prior (see Chapter 2 for details).

In order to estimate a species tree with the posterior distribution in Equation
8.1 one approach is to simply sample the full state space of gene trees and
species tree using MCMC and treat the gene trees (g) as nuisance parameters,
thereby summarizing the marginal posterior distribution of the species tree. This
effectively integrates the gene trees out via MCMC (Heled and Drummond 2010;
Liu 2008):

f(S|D) = f(S)
Pr(D)

∫
G

m∏
i=1

Pr(Di|gi)f(gi|S)dG. (8.2)

An alternative approach that has been used in the application of the multi-
species coalescent to SNP data (Bryant et al. 2012) is to numerically integrate
out the gene trees for each SNP so that:

f(S|D) = f(S)
Pr(D)

m∏
i=1

Pr(Di|S) (8.3)

where Pr(Di|S) =
∫
Gi

Pr(Di|gi)f(gi|S)dGi (Bryant et al. 2012).

D
RA

FT
14-7

-2
014

8.3 *BEAST 125

8.3 *BEAST

BEAST 2 includes a Bayesian framework for species tree estimation. The sta-
tistical methodology described in this section is known by the name *BEAST
(pronounced “STAR-BEAST”, which is an acronym for Species Tree Ancestral
Reconstruction using BEAST) (Heled and Drummond 2010). The model as-
sumes no recombination within each locus and free recombination between loci.
Approaches that include hybridisation to the species tree are in development
(Camargo et al. 2012; Chung and Ané 2011; Yu et al. 2011). A tutorial is avail-
able for *BEAST that uses three gopher genes (Belfiore et al. 2008) to estimate
the species tree (see BEAST wiki).

*BEAST does not require that each gene alignment contains the same number
of sequences. It also does not need the same individuals to be sampled for each
gene, nor does it need to match individuals from one gene to the next. All that is
needed is that each sequence in each gene alignment is mapped to the appropriate
species. Note that *BEAST cannot be used with time-stamped sequences at the
time of writing due primarily to technical limitations in the implementation
of the MCMC proposals. For details on the multispecies coalescent model that
underlies *BEAST see Section 2.5.1.

Most multispecies coalescent models assume that the population size is con-
stant over each branch in the species tree (Figure 8.3). However two other models
of population size history are implemented in *BEAST. The first allows linearly
changing population sizes within each branch of the species tree including the
final ancestral population at the root (see Figure 8.4). The second also allows
linear changing population sizes, but has a constant population size for the an-
cestral population stemming from the root. (see Figure 8.2 for an example of this
latter option). The linear model is the most general implemented in *BEAST.
The other two models can be used when less data is available.

The population sizes prior f(N) depends on the model used. For constant
population per branch (see figure 8.3), the population size is assumed to be a
sample from a gamma distribution with a mean 2ψ and a shape of α, that is,
Γ(α,ψ) (defaults to α = 2 at the time of writing). Unless we have some specific
knowledge about population size, an objective Bayesian inspired choice might
be fψ(x) ∝ 1/x for hyper-parameter ψ, although note that this choice may be
problematic if the marginal likelihood needs to be computed by path sampling.

In the continuous linear model, we have ns population sizes at the tips of the
species tree, and two per each of the (ns − 1) internal nodes, expressing the
staring population size of each of the descendant species (Figure 8.4). The prior
for the population sizes at the internal nodes are as above, but for the ones at
the tips, they are assumed to come from a Γ(2k, ψ) distribution. This is chosen
to assure a smooth transition at speciations because X1, X2 ∼ Γ(k, ψ) implies
X1 +X2 ∼ Γ(2k, ψ). This corresponds to having the same prior on all final (most
recent) population sizes of both extant and ancestral species (see Figure 8.4).

*BEAST has been applied to determine that polar bears are an old and distinct

D
RA

FT
14-7

-2
014

126 Estimating species trees from multilocus data

T
im

e

Population size

5

4

1 2

3

Figure 8.3 A species tree with constant size per species branch. For nS species this
leads to 2nS − 1 population size parameters.

bear lineage (Hailer et al. 2012), to distinguish between single and dual origin
hypothesis of rice (Molina et al. 2011), analysing the speciation process of forest
geckos (Leaché and Fujita 2010) and examining cryptic diversity in butterflies
(Dincă et al. 2011).

8.3.1 Performing a *BEAST analysis

The easiest way to set up a *BEAST analysis is using the StarBeast template,
which you can choose from the File/Template menu in BEAUti. An extra ‘Taxon
Set’ and ‘Multi Species Coalescent’ tab appears, the first for specifying which
taxon from the gene tree is part of a certain species. At the multi-species coales-
cent tab you can choose the population function (constant, linear, or linear with
constant root). Also, for each of the gene trees you can specify the ploidy of the
sequences.

Convergence: Note that *BEAST analysis can take a long time to converge,
especially when a large number of gene trees are involved. The usual methods
for speeding up tree-likelihood calculations such as using threads and fine-tuning
with Beagle applies, as well as specifying as much prior information as possible.
If few loci are available, you can run a *BEAST analysis with just a few lin-
eages (say 20) for an initial run in order to determine model settings. Reducing
sequences speeds up the chain considerably without affecting accuracy of esti-

D
RA

FT
14-7

-2
014

8.3 *BEAST 127
T

im
e

Population size

extant species

Ai ∼ Γ(k,Θ)

Ni ∼ Γ(2k,Θ)

ancestral species

Ai ∼ Γ(k,Θ)

Aleft(i) ∼ Γ(k,Θ)
Aright(i) ∼ Γ(k,Θ)

i.e. Aleft(i) +Aright(i) ∼ Γ(2k,Θ)

5

4

1 2

3

Figure 8.4 The population size priors on the branches of a three species tree.

mates too much, since adding more sequence is not as effective as adding more
loci.

Linking trees: If the genes are linked they should only be represented by a
single tree in *BEAST. So genes from the same “non-recombining” region of the
Y chromosome should be represented by only a single tree in *BEAST (or any
other multi-species coalescent method for that matter).

*BEAST for species tree with single gene: Estimating a species tree
from a single gene tree is perfectly valid. In fact, we highly recommend it, as it
will give much more realistic assessments of the posterior clade supports. That
is, it will correctly reduce the level of certainty on species tree groupings, since
incomplete lineage sorting may mean the species tree is different from the gene
tree, even in the face of high posterior support for groupings in the gene tree
topology.

Visualising trees: DensiTree can be used to visualise a species tree where
the branch widths represent population sizes. There are tools in the biopy pack-
age1 that can help visualising species trees and gene trees as well. The *BEAST
tutorial has some examples on visualising species trees.

Population size estimates: In terms of accuracy, the topology of the species
tree is typically well recovered by a *BEAST analysis, the time estimates of the
species tree contain larger uncertainty, and population size estimates contain
even larger uncertainty. The most effective way to increase accuracy of population

1 Available from http://code.google.com/p/biopy/.

http://code.google.com/p/biopy/

D
RA

FT
14-7

-2
014

128 Estimating species trees from multilocus data

size estimates is to add more loci (Heled and Drummond 2010). As a result, the
number of lineage trees increases, and with it the number of coalescent events
that are informing population size estimates. Increasing sequence lengths helps in
getting more accurate time estimates, but since the number of coalescent events
does not increase, population size estimates are not increasing in accuracy as
much.

Species assignment: In a *BEAST analysis, it is assumed that you know
the species that a sequence belongs to. However, if it is uncertain whether a
sequence belongs to species A or species B, you can run two analysis, one with
each assignment. The chain with the best marginal likelihood (see Section 9.5)
can be assumed to contain the correct assignment (Grummer et al. 2014).

It can happen that the species assignment is incorrect, which results in co-
alescent events higher up in the species tree than if the species assignment is
correct. As a result population size estimates will be unusually high. So, relative
high population size estimates may indicate incorrect assignments, but it can
also indicate the existence of a cryptic species in your data.

Note that a species assignment of lineages does not enforce monophyly of the
lineages belonging to a single species, as shown in Figure 8.2.

8.4 SNAPP

SNAPP (SNP and AFLP Package for Phylogenetic analysis) is a package to
BEAST to perform MCMC analysis on SNP and AFLP data using the method
described in (Bryant et al. 2012). It calculates Equation (8.1) just like for a
*BEAST analysis, but works with binary data such as SNP or AFLP instead of
nucleotide data typically used in *BEAST analysis. If we call the sequence values
‘green’ and ‘red’, this means we have to specify a substitution rate u for going
from green to red, and a substitution rate v for going from red to green. Another
difference with *BEAST is that instead of keeping track of individual gene trees,
these are integrated out using a smart mathematical technique. So, instead of
calculating the integral as in Equation (8.2) by MCMC, the integral is solved
numerically. This means that the individual gene trees are not available any
more, like they are with *BEAST. A coalescent process is assumed with constant
population size for each of the branches, so with every branch a population size
is associated.

A common source of confusion, both for SNAPP and similar methods, is that
the rates of mutation and times are correlated, so we typically rescale the sub-
stitution rates such that the average number of mutation per unit of time is one.
Let µ be the expected number of mutations per site per generation, g the length
of generation time in years, N the effective population size (number of individ-
uals) and θ the expected number of mutations between two individuals. For a
diploid population, θ = 4Nµ. If µ is instead the expected number of mutations

D
RA

FT
14-7

-2
014

8.4 SNAPP 129

per site per year then we would have θ = 4Nµg. In the analysis in (Bryant et al.
2012) time is measured in terms of expected number of mutations. Hence

• The expected number of mutations per unit time is 1.
• A branch of length τ in the species tree corresponds to τ/µ generations, or
τg/µ years.
• The backward and forward substitution rates, u and v, are constrained so that

the total expected number of mutations per unit time is 1, which gives
v

u+ v
u+ u

u+ v
v = 1.

• The θ values are unaffected by this rescaling. If the true mutation rate µ

is known, then the θ values returned by the program can be converted into
effective population sizes using N = θ/(4µ).

There is no technical limitation to use SNAPP for divergence date estimation
using either calibrations or serially sampled data. However, this has not been
formally tested yet.

8.4.1 Setting up a SNAPP analysis

To set up a SNAPP analysis, first you have to install the SNAPP package if it
is not already installed (see Section 7.3). Once SNAPP is installed, you need to
change to the SNAPP template in BEAUti to set up a SNAPP analysis. More
practical information including screen-shots of BEAUti is contained in ‘A rough
guide to SNAPP’ (Bouckaert and Bryant 2012), available via the BEAST wiki.

Mutation model settings: There is a simple way to determine the values
of u and v from the data, so that they do not need to be estimated by MCMC.
This has the advantage of reducing some uncertainty and calculation time and
appears to have little effect on the accuracy of the analysis. Given the rates
u and v, the stationary frequencies of the two states are π0 = v/(u + v) and
π1 = u/(u+v), while the substitution rate is µ = π0u+π1v = 2uv

u+v . Hence, given
an estimate for π1, and the constraint that the substitution rate is µ = 1, we can
solve for u and v as

v = 1
2π1

, u = 1
2π0

= 1
2(1− π1) .

For haploid data, to get an estimate for π1 (hence π0 = 1 − π1) count the
number of ones in the alignment and divide by the number of observed sites
(which equals the number of sequences times sequence length, from which the
number of unknown sites are subtracted). For diploid data, count the number
of ones and add twice the number of twos then divide by twice the number of
observed sites.

If you prefer to estimate the substitution rates by MCMC, a hyper prior on
the rate needs to be specified. Since SNAPP assumes the substitution rate equals
1, which constrains the value of u if v is known, if you estimate u this implies

D
RA

FT
14-7

-2
014

130 Estimating species trees from multilocus data

prior α β κ

Gamma shape scale ignored
Inverse gamma shape scale ignored
CIR see text see text see text
Uniform ignored ignored ignored

Table 8.1 Parameters and their usage in the SNAPP prior

you estimate v as well. It can be useful to specify upper and lower bounds on
the rates. In general, the MCMC for u and v should converge quickly and the
estimates should have little variance.

SNAPP has a few optional extras when specifying the mutation model. You
can indicate whether to use non-polymorphic data in the sequences. If true,
constant-sites in the data will be used as part of the likelihood calculation. If
false (the default) constant sites will be removed from the sequence data and
ascertainment bias is incorporated in the likelihood.

You can indicate conditioning on zero mutations, except at root (default false).
As a result, all gene trees will coalesce in the root only, and never in any of the
branches.

It is possible to indicate whether alleles are dominant, however in our expe-
rience this only leads to much longer run times without changing the analysis
significantly. Therefore it is assumed alleles are not dominant by default.

Tree prior settings: Just like for a *BEAST analysis, a Yule prior is appro-
priate for the species tree for most SNAPP analysis (see Section 7.2.3).

Rate prior settings: The SNAPP template suggests four priors for the rates:
gamma, inverse gamma, CIR and uniform. Table 8.1 lists which parameters
are used in which prior. The parameters for the gamma, inverse gamma and
uniform distributions are the same over the entire tree, and for all trees, and the
prior distribution for each ancestral population are independent. When using
‘inverse Gamma’ as a prior we assume independent inverse gamma distributions
for thetas, so (2/r) has an inverse gamma (α, β) distribution. That means that
r has density proportional to 1/(r2) ∗ Γinv(2/r|α, β) where Γinv is the inverse
gamma distribution.

The Cox-Ingersoll-Ross (CIR) process (Cox et al. 1985) ensures that the mean
of θ reverts to a Γ(α, β) distribution, but can divert over time. The speed at
which the rate reverts is determined by κ. The correlation between time 0 and
time t is e−κt, so with the CIR prior the distribution for rates is not uniform
throughout the tree.

When selecting ’uniform’ we assume the rate is uniformly distributed in the
range 0...10000, which means there is a large proportion of the prior indicates a
large value, with a mean of 5000.

D
RA

FT
14-7

-2
014

8.4 SNAPP 131

Figure 8.5 Population size estimate issues for species tree (in grey) with 3 species and
a single gene tree in black. Left, sequences too close, middle sequences too diverse,
right insufficient sequences.

8.4.2 Running SNAPP

A SNAPP analysis is run just as any BEAST analysis by using the BEAST
program with the XML file. Note that SNAPP is very computationally intensive
and there is no GPU support (as in Beagle) yet. However, SNAPP is multi-
threaded, and using more threads can have dramatic impact on the run time.
Experimentation is required to determine the optimal number of threads since
performance depends on the data. It can appear that SNAPP hangs if the number
of lineages is very large. To get a feeling for your data and how much SNAPP
can handle, it is recommended to run the analysis with a small subset of the
sequences, say not more than 20 for diploid and 40 for haploid data.

One important consideration when interpreting the population sizes estimated
by SNAPP is that these are effective population sizes over the entire length of
the branch, not census (absolute) population sizes. There are many phenomena
which can cause a large discrepancy between effective and census populations
sizes. A population bottleneck, for example, can significantly reduce the effective
population size for the entire branch. In the other direction, geographic structure
within a population increases the effective population size.

To understand these effects, Figure 8.5 shows a few issues with population
size estimation. When lineages are very close together and all coalescent events
take place in the lowest branches ending in the taxa, so that at the top of
these branches most likely just a single lineage remains. In this situation, the
population sizes for the lower branches can be accurate, but since at most one
coalescent event can take place in all the other branches all other estimates
are necessarily low with high uncertainty. Likewise, if the sequences are too
diverse, all coalescent events happen in the root and no accurate population size
estimates can be guaranteed for all lower lying branches. Make sure you have at
least a couple of sequences per species, otherwise it becomes impossible to get
an estimate of populations sizes. This is because with just a single lineage for a
species, there will be no coalescent event in the branch of the species tree ending
in the taxon for that lineage, and population size estimates rely on coalescent
events.

D
RA

FT
14-7

-2
014

132 Estimating species trees from multilocus data

It is a good idea to run a SNAPP analysis with different settings for rate
priors to detect that the estimates are not just samples from the prior but are
informed by the sequence data. If the rate estimates are shaped according to
the prior parameters one must be suspect of the accuracy. You can see this
by inspecting the log file in Tracer. When the estimate changes with the prior
parameters in individual runs with different priors you know that the estimates
are not informed by sequence data, and these estimates should be considered
uninformative. In general, it is quite hard to get good population size estimates.
Like with *BEAST analysis, the estimate for the species tree topology tends to
be most accurate, while timing estimates tend to be less accurate, and population
size estimates even less accurate.

If you have large population size estimates relative to estimates for most
branches, this may indicate errors in the data. Incorrect species assignment,
for a sequence will create the appearance of high diversity within the popula-
tion it is placed in. Existence of cryptic species in your data also leads to large
effective population size estimates. The models underlying SNAPP, as well as
most of the methods in BEAST, assume a randomly mating population, at least
approximately. Violations of this assumption could have unpredictable impacts
on the remaining inferences. If cryptic species or population substructure is sus-
pected it is preferable to re-run the analysis with sub-populations separated. In
summary, large population size estimates should be reason for caution. By using
model selection it is possible to reliably assign lineages to species and perform
species delimitation(Leaché et al. 2014).

SNAPP is currently used in analysis of human SNPs, including some based on
ancient DNA sequences, European and African blue tits, the latter in Morocco
and on the Canary islands, and various species of reptiles and amphibians such
as western fence lizards (Sceloporus occidentalis), horned lizards (Phrynosoma),
west African forest geckos (Hemidactylus fasciatus complex), African agama
lizards (Agama agama complex), tailed frogs (Ascaphus truei), African leaf litter
frogs (Arthroleptis poecilonotus) (personal communications).

D
RA

FT
14-7

-2
014

9 Advanced analysis

9.1 Sampling from the prior

There are a number of reasons why you want to run an analysis where you sample
from the prior only before running the full analysis. One issue that shows up
is when priors are improper. Here we mean improper in a strict mathematical
sense, that is, the prior does not integrate to unity (or any finite constant). When
employing improper priors, the posterior will also typically be improper and if
that is the case then the results of the MCMC analysis will be meaningless, and
its statistical properties undefined. Often the observed behaviour of the chain
will be that some parameter meander to either very large or very small values
and never converge to a steady-state. For example, a uniform prior with bounds
0 and +∞ over a clock rate can push the clock rate to very large numbers due
to up/down or scale operation steps. As a result, without a strong calibration
prior, the posterior may not converge. For this reason, one should chose proper
priors unless you know what you are doing.

Another reason to sample from the prior is to make sure that the various priors
do not produce an unexpected joint prior in combination, or if they do, to check
that the resulting prior is close enough to the practitioner’s intentions. Especially
when calibrations are used this can be an issue (Heled and Drummond 2012) since
calibrations are priors on a part of a tree and a prior for the full tree is usually also
specified (like Yule or coalescent). This means there are multiple priors on the
same parameter, which can produce unexpected results in combination. Another
situation is where a calibration on a clade that sets an upper bound on the height
of the clade has an impact on node heights inside the clade, since none of them
can exceed the specified upper boundary. When a non-bounded calibration is
specified on a subclade this prior will be truncated at the top by the calibration on
the superclade. This phenomenon arises because only one-dimensional marginal
priors may be specified, even though it would be more appropriate to directly
specify multi- dimensional priors when more than one divergence is calibrated.
The result of specifying independent one-dimensional prior on divergences that
are mutually constrained (e.g. x < y) can, for example, show up when sampling
from the prior as a truncated distribution, see Figure 9.1. If there is any reason
to believe a clade for which there is a calibration is monophyletic, it is always a
good idea to incorporate this information as a monophyletic constraint since this

D
RA

FT
14-7

-2
014

134 Advanced analysis

mrcatime(ab)

F
re

q
u

e
n

cy

4 5 6 7 8 9 1 0 1 1
0

5 0

100

150

200

250

300

350

Normal prior

Uniform prior

anolis.log
-10 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0
0

5E-2

0.1

0.15

0.2

0.25

0.3

Sub-clade

Lognormal prior

mrcatime(A)
0 1 0 2 0 3 0 4 0 5 0 6 0 7 0

0

0.1

0.2

0.3

0.4

0.5

Super-cladeprior

Lognormal prior

Figure 9.1 Top left a distribution of a clade by sampling from the prior. The clade
has a normal (mean= 9, σ = 1 indicated by red line) calibration and a superclade has
a uniform distribution with upper bound of 10 (blue line). The distribution still has a
mean close to 9, but is now clearly asymmetric and the probability mass of the tail on
the right is squeezed in between 9 and 10. Top right a marginal density of MRCA
time of a clade with a log-normal prior together with the distribution of the MRCA
time of a subclade and of a superclade. Note that the subclade follows the parents
distribution mixed with tail to the left. The superclade has almost the same
distribution as the calibrated clade since the Yule-prior on the tree tries to reduce the
height of the tree, but the calibration prevents it from pushing it lower. Bottom
shows how the marginal density of MRCA time of a node with a log-normal
calibration changes when a calibration is added to a super clade. The super clade
pulls up the average MRCA time of the lower clade. Note that enforcing the clades to
be monophyletic reduces a lot of this issue.

typically reduces the complexity of interacting between multiple calibrations. It
also helps in convergence of the full analysis.

The easiest way to sample from the prior is to set up an analysis in BEAUti
and on the MCMC panel click the ‘Sample from prior’ checkbox. Running such
an analysis is typically very fast since most of the computational time in a
full analysis is spent calculating the phylogenetic likelihoods (see Section 3.7 for
details of the algorithm), which are not computed when sampling from the prior.
After you verified the prior distribution is an adequate representation of your
prior belief, uncheck the checkbox in BEAUti and run the full analysis. When
sampling from the prior, the likelihood is reported as NaN, which means ‘not a
number’, since it is not calculated when sampling from the prior.

D
RA

FT
14-7

-2
014

9.2 Serially sampled data 135

A B C D E A B C D

E

A B C D E

Figure 9.2 Left, tree without sampling dates for which no divergence time estimate is
possible without calibrations on internal nodes or a strong prior on the rate of the
molecular clock. Middle, tree where tip dates information is sufficiently strong
(provided long sequences) to allow divergence time estimates with a good degree of
certainty, since the sample dates cover a relatively large fraction of the total age of
the tree. Right, tree where tip date information is available, but may not be sufficient
for accurate estimation, so divergence time estimates will also be informed by the
prior to a large extent.

9.2 Serially sampled data

Calibrations on internal nodes (node dating), as described in Chapter 4 are one
way to incorporate temporal information in an analysis. Another method to
achieve this is to use the sampling dates of the taxa themselves. Especially with
fast evolving species such as RNA viruses like HIV and influenza, the evolution-
ary rate is high enough and the sampling times wide enough that rates can be
estimated accurately (Drummond et al. 2003).

Note that having a sample date is not always sufficient to establish time of
the root of a tree, or rates with any degree of certainty. Figure 9.2 illustrates
why in some situations having tip dates is not sufficient to get an accurate diver-
gence time estimate. If the root estimate is orders of magnitude greater than the
difference between the oldest and most recent samples (the sampling interval),
one must wonder how accurate such an estimate is. Another consideration is the
average number of substitutions along a branch spanning the sampling inter-
val. This will be a product of the time, the evolutionary rate and the sequence
length. In cases where the information available from sampling times may not
be sufficient, other calibration information, for example from the fossil record or
from broad priors on the rate based on independent evolutionary rate estimates,
may be used in combination with sampling date information to achieve accurate
divergence time estimates.

A tutorial on measurable evolving populations is available from the wiki that
explains in detail how to work with serially sampled data. Some tree priors such
as the Yule prior were developed with contemporaneous sampled data in mind,
so not all tree priors can be employed when tip dates are introduced.

BEAUti provides support for entering taxa dates in the Tip Dates panel. When
enabling tip dates, a table appears and you can edit the dates of sequences

D
RA

FT
14-7

-2
014

136 Advanced analysis

manually by simply double clicking the appropriate cell in the table, typing
the value and hitting return. Often, information about the sample dates are
contained in the taxa names. Instead of manually entering the dates, a utility
is available that can guess the tip date from the taxon name. Also, if the tip
dates data is stored in a file, such as a comma separated file exported from a
spreadsheet, you can import the dates using the guess dialog.

The method has been applied to ancient DNA to reconstruct a detailed pre-
historic population history of bison (Shapiro et al. 2004), estimate the rate of
evolution in Adélie penguins (Lambert et al. 2002), and resolve the taxonomy
of the ratite moa (Bunce et al. 2003). Another large area of application is with
fast evolving pathogens, for example, the epidemiology of swine flu (Lemey et
al. 2009b; Vijaykrishna et al. 2011), cholera (Mutreja et al. 2011), and Simian
immunodeficiency virus (SIV) (Worobey et al. 2010).

9.3 Demographic reconstruction

Relative population sizes through time can be derived from the tree through the
coalescent process as explained in Section 2.3. One of the nice features of such
a reconstruction is that we can detect population bottlenecks. Furthermore, in
epidemics, population size plots can be effective in detecting when epidemics
started and whether policy changes for managing an epidemic have been effec-
tive (see Chapter 5 for models specifically designed for reconstructing epidemic
dynamics). To be able to reconstruct the population history you need to run an
analysis with one of the coalescent tree priors, for example a coalescent prior with
a parametrized population function such as constant or exponential growth, or
(extended) Bayesian skyline plot (Drummond et al. 2005; Heled and Drummond
2008). Birth/death prior based demographic plots are also possible (Stadler et al.
2013) but are less mature. There is support in Tracer to reconstruct demographic
histories, both from parametric coalescent analysis and Bayesian skyline plots.

A demographic reconstruction appears as a graph showing population history
where the median (or mean) population size (actually Neτ) and 95% HPD in-
tervals are plotted through time. An example is shown in Figure 9.3. Note that
the y-axis does not represent absolute population size but population size, which
is expressed in Ne.τ where Ne is the effective population size and τ generation
time (expressed in the same units as the time-tree divergences). You might want
to rescale the skyline plot and express it in Ne by dividing the population size by
generation time τ . The population size values can be exported to a spreadsheet
where they can be divided by τ and a new graph created. The median tends to
be a more robust estimator when the posterior distribution has a long tail, and
a log-scale for the y-axis can help visualisation when population sizes vary over
orders of magnitude as can be the case during periods of exponential growth or
decline.

The advantage of the extended Bayesian skyline plot (EBSP) over the BSP is

D
RA

FT
14-7

-2
014

9.3 Demographic reconstruction 137

Figure 9.3 Bayesian skyline reconstruction in Tracer.

that it does not require specifying the number of pieces in the piecewise popu-
lation function. EBSP estimates the number of population size changes directly
from the data using Bayesian stochastic variable selection.

For EBSP analysis, a separate log file is generated, which can be processed
with the EBSPAnalyser, which is part of BEAST 2. The program reads in the
log file and generates a tab separated file containing time and mean, median
and 95% HPD interval information that can be visualised with any spreadsheet
program.

The number of groups used by the EBSP analysis is recorded in the trace log
file. It is not uncommon when comparing a BSP analysis with an EBSP analysis
to find that (with default priors) the EBSP analysis uses on average a lot fewer
groups when analysing a single locus. As a result, the demographic reconstruction
based on EBSP does not show a lot of detail, and in fact may often converge on a
single group (which makes it equivalent to a constant population size model). Be
aware that the default prior on the number of population size function in EBSP
may be prone to under-fitting, so that increasing the prior on the number of
population size changes may increase the sensitivity of the analysis to detection
of more subtle signals of population size change in the data.

To increase the resolution of the demographic reconstruction, it is tempting to
just add more taxa. However, EBSP tends to benefit more from using multiple
loci than from just adding taxa (Heled and Drummond 2008). So, adding an
extra locus, with an independent gene tree but sharing the EBSP tree prior
gives an increase in accuracy of the population size estimation that is generally
larger than just doubling the number of taxa of a single alignment. This does not
mean that adding more taxa does not help, but just that adding another locus

D
RA

FT
14-7

-2
014

138 Advanced analysis

will generally help more while adding the same amount of data to the analysis.
Likewise, increasing the length of the sequence tends not to help as much as
increasing the number of loci. Felsenstein has published a careful study of these
tradeoffs in the context of coalescent estimation (Felsenstein 2006).

9.3.1 Some demographic reconstruction issues to be aware of

A BSP or EBSP reconstruction typically shows 95% HPD intervals that (going
back in the past) can remain constant in both estimate and uncertainty for a
large portion at the end of the plot. Intuitively, one would expect the size of these
intervals to increase going back in time since the further one goes back in time
the more uncertain estimates should be (when there is no timing information or
calibration). This holds especially for the the oldest part of the plot.

However the reason these HPD intervals do not behave as expected is that
the boundaries of the underlying piecewise-constant population function coin-
cide with coalescent events (by design). If instead the boundaries were chosen to
be equidistant, then the expected increase in uncertainty going back towards the
root would occur because on average there would be less coalescent events in in-
tervals that are nearer to the root and the times of those coalescent events nearer
the root would also be more uncertain. However, because of the designed coinci-
dence of population sizes changes at coalescent events in the BSP and EBSP, the
number of coalescent events per interval (i.e. the amount of information available
to estimate population size per interval) is a priori equal across intervals. So in
(E)BSP models, uncertainty in population size is traded for a loss of resolution
in the timing of population size changes (since the underlying population size
can typically only change at wide intervals near the root of the tree).

Note that this is different from demographic reconstructions based on birth
death models. Where coalescent based methods have few data points to base
population size estimates on near the root, birth death models allow many events,
thus higher number of changes in the estimate of population sizes (Stadler et al.
2013). Consequently, populations reconstruction based on birth death models
show 95% HDP intervals that grow larger the further one goes back in time.

With BSP, often a horizontal line can be drawn through the 95% HPD in-
terval. This does not necessarily mean that the hypothesis that the population
is constant over the time interval is confirmed (or more precisely, cannot be re-
jected). A better way to decide whether there is a trend in population size is
to count the fraction of trees in the posterior sample that suggest a trend. For
example, if more than 95% of the trees have a skyline plot where the population
size at the root is smaller than at the base, a growing population size can be
assumed.

One of the reasons that a demographic reconstruction can come with large 95%
HPD intervals suggesting large uncertainty in population sizes is due uncertainty
in the molecular clock rate. Figure 9.4 shows the effect of having low uncertainty
in the relative divergence times, but large uncertainty in the overall molecular

D
RA

FT
14-7

-2
014

9.3 Demographic reconstruction 139

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1990 1995 2000 2005 2010

Figure 9.4 A BSP analysis in which the relative divergence times are well estimated,
but the absolute times are not will produce a posterior distribution containing trees
with a wide variation of root ages. It may be the case that conditional on a particular
root age, there is a strong trend in population size through time with low uncertainty,
but as a result of the uncertainty in the absolute time scale the overall result is a BSP
with large uncertainty. In this hypothetical example, the time- trees with old root
ages have a BSP indicated by the curve to the right, with (conditional) 95% HPD
indicated by dashed lines. Likewise, the young time-trees from the posterior sample
can have a BSP indicated by the curve on the left. However, together they have a
95% HPD covering both curves, which shows up as large 95% HPD intervals in the
skyline plot of the the full posterior.

clock rate. If only trees corresponding to low molecular clock rates and thus old
trees were considered in the posterior, the BSP would exhibit narrow 95% HPD
intervals. Likewise for trees associated with high molecular clock rates. However,
since the posterior contains both the old and young trees, together the 95% HPD
interval spans the range and the HPD bounds become quite large. A BSP drawn
in units of percentage of tree height would show much smaller intervals, and
may uncover a strong underlying signal for population dynamics, that would
otherwise be lost.

Finally, one has to be aware that non-parametric methods like BSP can con-
tain systematic bias (Silva et al. 2012), due to sampling strategies when using
measurable evolving populations. This can lead to conclusions that an epidemic
slowed, while the facts do not support this. On the other hand parametric meth-
ods can give unbiased estimates if the population sizes are large enough, and the
correct parametric model is employed.

Applications: Some notable applications of demographic reconstruction are
determining the pandemic potential of the influenza H1N1 strain (Fraser et al.
2009), and tracking feline immunodeficiency virus in order to reveal population
structure of its host, Puma concolor, (Biek et al. 2006). It is possible to de-

D
RA

FT
14-7

-2
014

140 Advanced analysis

tect population bottlenecks, for example in Moroccan sardines (Atarhouch et al.
2006), fur seal (Arctocephalus gazella) (Hoffman et al. 2011) and hydrothermal
shrimp (Teixeira et al. 2012) to name just a few. It was used to demonstrate pop-
ulation decline in African buffalo during the mid-Holocene (Finlay et al. 2007)
ancient bison (Drummond et al. 2005), as well as population expansions in do-
mesticated bovines (Finlay et al. 2007) and lack of population decline in woolly
mammoth during a long period before its demise (Debruyne et al. 2008).

9.4 Ancestral reconstruction and phylogeography

BEAST can perform various phylogeographical analyses. One way to look at
these analyses is as extending alignments with extra information to indicate the
location. For discrete phylogeographical analysis, a single character (data col-
umn) is added and for continuous analysis a latitude-longitude pair is added.
These characters share the tree with the alignment, but have their own substitu-
tion and clock model. That is why for discrete and continuous phylogeography
they are treated in BEAUti as just a separate partition, and they are listed in
the alignment tab just like the other partitions.

Discrete phylogeography (Lemey et al. 2009a) can be interpreted as a way to
do ancestral reconstruction on a single character, which represents the location
of the taxa. Sampled taxa are associated with locations and the ancestral states
of the internal nodes in a tree can be reconstructed from the taxon locations. In
certain circumstances it is not necessarily obvious how to assign taxa to a set of
discrete locations, or indeed how to choose the number of discrete regions used
to describe the geographical distribution of the taxa. The number of taxa must
be much larger than the number of regions for the analysis to have any power. If
the number of regions is relatively large, then the root location will often cover
almost all regions in the 95% HPD interval. For the practicalities of setting up
such analysis, there is a tutorial for ancestral reconstruction available from the
wiki, which describes how to perform an analysis of discrete phylogeography. This
approach was applied to reconstruction of the initial spread of human influenza
A in the 2009 epidemic (Lemey et al. 2009b), tracing Clostridium difficile, which
is the leading cause of antibiotic-associated diarrhoea worldwide (He et al. 2013),
and geospatial analysis of musk ox with ancient DNA (Campos et al. 2010).

Besides the ancestral locations, the key object of inference in a phylogeo-
graphical model is the migration rate matrix (see Chapter 5). In a symmetrical
migration model with K locations there are K(K−1)

2 migration rates, labelled
1, 2, . . . , K(K−1)

2 . These labels are in row-major order, representing the rates
in the upper right triangle of the migration matrix see Figure 9.5. For a non-
symmetric migration model the number of rates is K(K − 1).

For continuous phylogeography (Lemey et al. 2010), the locations (or regions)
of the individual taxa need to be encoded in latitude and longitude. A model of
migration via a random walk is assumed, and this makes such an analysis a lot

D
RA

FT
14-7

-2
014

9.4 Ancestral reconstruction and phylogeography 141

A B C D E

A - 1 2 3 4
B 1 - 5 6 7
C 2 5 - 8 9
D 3 6 8 - 10
E 4 7 9 10 -

A B C D E

A - 1 2 3 4
B 5 - 6 7 8
C 9 10 - 11 12
D 13 14 15 - 16
E 17 18 19 20 -

Figure 9.5 Left, a matrix for ancestral reconstruction with five locations
{A,B,C,D,E}, with symmetric rates. Right, a matrix with five locations
{A,B,C,D,E}, with non-symmetric rates.

more powerful than a discrete phylogeography analysis since distances between
locations are taken in account. For many species, a random walk as method of
migration is a reasonable assumption. However, for species that have seasonal
migrations such as shore birds, this assumption does not hold. Likewise, viruses
transmitted by humans migrate efficiently through air-plane travellers, which
makes migration through a random walk obviously an erroneous assumption.
A tutorial for continuous phylogeography is available from the wiki, which in-
cludes visualisation using SPREAD (Bielejec et al. 2011) and output to Google
Earth. This model was used to reconstruct the origin of Indo-european languages
(Bouckaert et al. 2012), perform an analysis of the spread of HIV in Cameroon
(Faria et al. 2012), and determine the origin of maize streak virus (Monjane
et al. 2011). Recently, a link between phylogenetics and mathematical spatial
ecology was established (Pybus et al. 2012) extending the relaxed random walk
into analysis of epidemics.

The simplest versions of continuous models are not aware of landscape fea-
tures so cannot distinguish between different rates of migration over for example
land and water. The landscape aware model (Bouckaert et al. 2012) can distin-
guish between such features and splits up space into discrete areas. So, in fact it
converts the problem into a discrete phylogeographical analysis where the sub-
stitution model is created based on the underlying landscape through a rather
computationally intensive pre-calculation. The landscape aware model will have
more power than the discrete model since it takes distances in account, just as the
continuous model. There will be only minor differences between the continuous
and landscape aware model if the landscape has rather uniform rates. However,
when rates are quite different, for example when the rate of migration along
shorelines is assumed to be much higher than migration over land or on water,
the landscape aware model can result in large differences in the reconstruction.
Also, the landscape aware model makes it relatively easy to reconstruct the path
along a branch, as shown in Figure 9.6.

For discrete and continuous phylogeographical analysis you need the beast-
classic package and the landscape aware model is implemented in the beast-geo
package.

Testing phylogeographic hypothesis: For a discrete phylogeographical

D
RA

FT
14-7

-2
014

142 Advanced analysis

Figure 9.6 Reconstruction of Hepatitis-B migration from Asia through northern
North-America using the landscape aware model. The summary tree is projected onto
the map as a thick line, and the set of trees representing the posterior is projected
onto the map as lightly coloured dots indicating some uncertainty in the migration
path, especially over some of the islands. Note the migration backwards into Alaska
after first moving deeply into Canada. The model assumed much higher migration
along coastlines than over water or land.

analysis (similarly as for a discrete traits), you might want to calculate the sup-
port for the geographic location of a certain common ancestor or the root of the
tree. The proportion of the sampled trees that fit the hypothesis gives the pos-
terior probability the hypothesis is true. TreeAnnotator creates a summary tree
and labels every internal node with the distribution of the geographical locations
at that node in the tree. You can use FigTree to inspect these distributions. Note
that it is important to compare with the prior distribution for the locations at
the clades of interest to ensure that the posterior distribution is informed by the
data instead of just reflecting the prior.

9.5 Comparing different models

Since BEAST provides a large number of models to choose from, an obvi-
ous question is which one to choose. The most sound theoretical framework
for comparing two models or hypothesis A and B in a Bayesian framework is
calculation the Bayes Factor (BF), defined as the ratio of the marginal like-
lihoods P (D|A)/P (D|B) for data D. Here P (D|A) is the marginal likelihood
with respect to the prior P (D|A) =

∫
P (θA|A)P (D|θA, A)dθA and similarly

P (D|B) =
∫
P (θB |B)P (D|θB , B)dθB .

There are a couple of ways of approximately calculating the marginal like-
lihood of each model, and therefore the Bayes factor between them, that can

D
RA

FT
14-7

-2
014

9.5 Comparing different models 143

BF range ln(BF) range log10(BF) range Interpretation

1 – 3 0 – 1.1 0 – 0.5 hardly worth mentioning
3 – 20 1.1 – 3 0.5 – 1.3 positive support

20 – 150 3 – 5 1.3 – 2.2 strong support
> 150 > 5 > 2.2 overwhelming support

Table 9.1 Interpreting Bayes factors

be done by processing the output of two BEAST analyses. A simple method
first described by (Newton and Raftery 1994) computes the Bayes factor via
importance sampling with the posterior as the importance distribution. With
this importance distribution it turns out that the harmonic mean of the sampled
likelihoods is an estimator of the marginal likelihood. Note that the harmonic
mean is not based on the posterior listed in the trace log but the likelihood entry.
By calculating the harmonic mean of the likelihood from the posterior output
of each of the models and then taking the difference (in log space) you get the
log BF and decide when the BF (log BF) is big enough to strongly favour one
model over the other. Interpretation of the BF according to (Kass and Raftery
1995) is shown in Table 9.1. Note in log space ln(20) = 3, so a log BF over 3 is
strong support for the favoured model.

You cannot do a valid Bayes factor analysis if one of the chains has not con-
verged, as indicated by low ESSs. So until you are able to get good ESSs, your
Bayes factor results are meaningless. A low ESS for a particular model might
indicate that there is not much signal in the data and you will have to make sure
your priors on the substitution model parameters are proper and sensible. Also,
see trouble shooting tips (Section 10.3) for more suggestions.

Let model A be BSP with strict clock and model B coalescent with constant
population and relaxed clock and we want to decide which model explains the
date best. A rule of thumb is that if the 95% HPDs of the likelihoods do not
overlap then it is safe to assume the model with highest likelihood performs
better. Note that we do not compare posteriors. Often, posteriors are not mu-
tually comparable between models because priors may not contain normalising
constants. Likelihoods on the other hand are guaranteed to sum to unity when
adding over all possible data sets, so likelihoods of quite different models such as
model A and B are comparable. Often, 95%HPDs of likelihoods do overlap and
a more sophisticated approach is required to compare the models.

The easiest, fastest but also least reliable way, as demonstrated in (Baele et al.
2012), to compare models is to run the MCMC chains for the models of interest
and use the harmonic mean estimator (HME) to estimate the marginal likelihood.
This can be done in Tracer by loading the log files and use the Analysis/Mode
Comparison menu. The HME is known to be very sensitive to outliers in the log
file. Tracer takes a number of bootstrap replicates so that the standard deviation
of the estimate can be calculated, which reduces the effect of outliers somewhat.

D
RA

FT
14-7

-2
014

144 Advanced analysis

Still, the HME is not recommended since it tends to overestimate the marginal
likelihood.

Furthermore, there is an estimator that is as convenient as the HME, but
slightly more reliable based on Akaike’s information criterion (AIC) through
MCMC (AICM) (Raftery et al. 2007). It is based on the observation that the
distribution of the log-likelihood approaches a gamma distribution for sufficiently
large amount of data. AICM directly estimates the parameters of a gamma dis-
tribution from the log-likelihood in the MCMC sample. AICM tends to be more
reliable than HME, but less reliable than a more computationally intensive path
sampling.

Path sampling and the stepping stone algorithm (Baele et al. 2012) are tech-
niques to estimate the marginal likelihood by running an MCMC chain sampling
from f(θ)Pr(D|θ)β for various values of β where f(θ) is the prior, Pr(D|θ) the
likelihood, θ the parameters of the model and D the data. When β is zero, the
chain samples from the prior and when β is one, the chain samples from the pos-
terior. For values of β between zero and one, the chain samples from something
in between prior and posterior. The difference between the path sampling and
stepping stone algorithm is in the details of the marginal likelihood estimator
once the empirical likelihoods for each of the β values have been obtained. The
stepping stone approach tends to be more robust.

A set of values for β, the steps, that give and efficient estimate of the marginal
likelihood (Xie et al. 2011) is by following the proportions of a β(0.3, 1.0) distri-
butions. To set up a path sampling analysis you need to set up a new XML file
that refers to the MCMC analysis of the model. To reduce computation on burn-
in, the end-state of a run for one value β is used as starting state for the next
β value. This works for every value of β, except for the first run, which requires
getting through burn-in completely. So, you need to specify burn-in for the first
run, burn-in for consecutive runs and chain length for generating samples. Proper
values depend on the kind of data and model being used, but burn-in for the
first run should not be less than burn-in used for running the standard MCMC
analysis. The log files can be inspected with Tracer to see whether the value of
burn-in is sufficiently large and that the chain length produces ESSs such that
the total ESS used for estimating the marginal likelihood is sufficiently large.

The number of steps need to be specified as well and this number is dependent
on the model. To determine a proper number of steps, run the path sampling
analysis with a low number of steps (say 10) first, then increase the number
of steps (with say increments of 10, or doubling the number of steps) and see
whether the marginal likelihood estimates remain unchanged. Large differences
between estimates indicate that the number of steps is not sufficiently large. It
may not be practical to run a path sampling analysis because of the computa-
tional time involved, especially for large analysis where running the main analysis
can take days or longer. In these cases it is reasonable to use AICM instead.

Bayes factors for comparing models A and B can be estimated directly through

D
RA

FT
14-7

-2
014

9.6 Simulation studies 145

path sampling by running MCMC chains while sampling from(
P (θA|A)P (D|θA, A)

)β(
P (θB |B)P (D|θB , B)

)1−β (9.1)

where β runs from 0 to 1 following a sigmoid function (Baele et al. 2013). Such
direct comparison of models instead of estimating marginal likelihoods in sep-
arate path sampling analysis has the advantage that fewer steps are required.
Furthermore, computational gains can be made if large parts of the model are
shared by models A and B. For example, if A and B only differ in the tree
prior, but the likelihoods are the same (P (D|θA, A) = P (D|θB , B)), Equation
(9.1) reduces to P (θA|A)βP (θB |B)1−βP (D|θA, A) and the likelihood needs to be
calculated only once.

Details on setting up the XML are at the BEAST wiki as well as and efficiently
running such analysis by using threads or a high performance cluster. Model
comparison is an active area of research, so it is possible that new more efficient
and more robust methods will be available in the near future.

Posterior predictive simulation models are gaining popularity for model selec-
tion and model fit (Brown 2014).

9.6 Simulation studies

Simulation studies can be used to find out the limits of the power of some mod-
els. Some questions that can be answered using simulation studies; how much
sequence data is required to be able to estimate the parameters of some model
used for generating the data reliably, how well can a tree topology be recovered
for data distributed according to a specific substitution model, or how much un-
certainty is contained in rate estimates under various ranges of serially sampled
data.

BEAST contains a sequence simulator that can be used to generate align-
ments. It requires specification of a tree-likelihood, with its tree, site model,
substitution model and clock model, and generates an alignment according to
the specification. The tree can be a fixed tree specified in Newick, or a random
tree generated from a coalescent process, possibly with monophyletic constraints
and calibrations. The site and substitution model as well as the clock model can
be any of the ones available in BEAST or one of its packages. However, note
that using a non-strict clock model requires extra care because of the way it is
initialised.

To perform simulation studies that involve dynamics of discrete populations
the Moments and Stochastic Trees from Event Reactions (MASTER) (Vaughan
and Drummond 2013) package can be used. It supports simulation of single and
multiple population sizes. Some applications include; simulation of dynamics
under a stochastic logistic model, estimating moments from an ensemble of real-
izations of an island migration model, simulating an infection transmission tree
from an epidemic model, and simulating structured coalescent trees. MASTER

D
RA

FT
14-7

-2
014

146 Advanced analysis

can be used in conjunction with a sequence simulator to generate alignments un-
der these models. For example, a tree simulated from the structured coalescent
can be used to generate an alignment, which can be used to try and recover the
original tree and its assignment of demes.

D
RA

FT
14-7

-2
014

10 Posterior analysis and
post-processing

In this chapter, we will have a look at interpreting the output of an MCMC
analysis. At the end of a BEAST run, information is printed to screen, saved in
trace and tree logs. This chapter considers how to interpret the screen and trace
log, while the next chapter deals with tree logs. We have a look at how to use
the trace log to compare different models, and diagnose problems when a chain
does not converge. As you will see, we emphasise comparing posterior samples
with samples from the prior, since you want to be aware whether the outcome
of your analysis is due to the data or a result of the priors used in the analysis.

Interpreting BEAST screen-log output: At the end of a BEAST run,
some information is printed to screen (see listing on page 92) showing how well
the operators performed. Next to each operator in the analysis, it shows the
number of times an operator was selected, accepted and rejected. If the accep-
tance probability is low (< 0.1) or very low (< 0.01) this may be an indication
that either the chain did not mix very well, or that the parameter settings for the
operator were not appropriate for this analysis. BEAST does some suggestions
to help with the latter case. Note that a low acceptance rate does not neces-
sarily mean that the operator is not appropriately parametrised. For example,
when the alignment data strongly supports one particular topology, operators
that make large changes to the topology (like the wide exchange operator) will
almost always be rejected. So, some common sense is required in interpreting
low acceptance rates.

If the acceptance rate is high (> 0.4), this almost always indicates the operator
does not produce efficient proposals, and BEAST may produce a suggestion to
change a parameter setting for the operator. The exception to this are Gibbs-
operators which are always accepted.

For relaxed clock models, if the uniform operator on the branch-rate cate-
gories parameter has a good acceptance probability (say > 0.1) then you do not
need the random walk integer operator on branch-rate categories. You could just
remove it completely and increase the weight on the uniform operator on branch-
rate categories. Any operator that changes the branch-rate categories parameter
changes the rates on the branches, and thus the branch lengths in substitutions
and therefore the likelihood.

D
RA

FT
14-7

-2
014

148 Posterior analysis and post-processing

Figure 10.1 Left, trace with an ESS of 36 that should be rejected, not only due to the
low ESS but is mainly due to the obvious presence of burn-in that should be removed.
Right, trace with ESS of 590 that is acceptable.

10.1 Trace log file interpretation

Probably, the first thing to do after a BEAST run finished is to determine that
the chain converged. There are many statistics for determining whether a chain
converged (Brooks and Gelman 1998; Gelman and Rubin 1992; Gelman et al.
2004; Geweke 1992; Heidelberger and Welch 1983; Raftery and Lewis 1992; Smith
2007) all of which have their advantages and disadvantages, in particular sensi-
tivity to burn-in. It is good practice to visually inspect the trace log in Tracer
(see Figure 6.7 for a screen shot) to detect obvious problems with the chain, and
check the effective sample size (ESS) (Kass et al. 1998).

How much burn-in: The first thing to check is the amount of burn-in in the
chain. Burn-in is the number of samples the chain takes to reach equilibrium and
these samples are commonly discarded. By default, Tracer assumes that 10% of
the chain is burn-in and this is sufficient most of the time. However, you really
need to inspect the graph of the items that are logged since it clearly shows when
burn-in is reached; during burn-in the values increase or decrease steadily and an
upward or downward trend is obviously present. After burn-in the trace should
not show a trend any more. Ideally, the smaller the amount of burn-in, the more
samples are available. If it looks like 50% or more of the chain is burn-in, it
becomes difficult to be sure the remaining part is a good representation of the
posterior distribution. In such a case it would be prudent to run the chain for
ten times longer.

As you can see in Figure 10.1, it is very important to actually visually in-
spect the trace output to make sure that burn-in is removed, and when running
multiple chains that all the runs have converged on the same distribution.

All about ESS: After setting up burn-in, the next thing to check is the effec-
tive sample size (ESS) (Kass et al. 1998) of parameters sampled from an MCMC.
The ESS is the number of effectively independent draws from the posterior dis-
tribution sampled by the Markov chain. This differs from the actual number of

D
RA

FT
14-7

-2
014

10.1 Trace log file interpretation 149

samples recorded in the trace log, which are dependent samples. In general, a
larger ESS means the estimate has higher confidence. Tracer flags ESSs smaller
than 100, and also indicates whether ESSs are between 100 and 200. But, this
may be a bit liberal and ESSs over 200 are more desirable. On the other hand
chasing ESSs larger than 10000 may be a waste of computational resources. Gen-
erally ESSs over 200 would be considered adequate so 700-800 is very good. If
the ESS of a parameter is small then the estimate of the posterior distribution
of that parameter can be expected to be poor.

Possibly not all parameters require adequate ESSs. Really low ESSs may be
indicative of poor mixing but if a couple of parameters that you are not interested
in are a little low it probably does not matter. The likelihood and prior should
have decent ESSs though. Furthermore, some parameters such as population
sizes for BSP analysis can jump between two states. This happens when at
some times they are associated with one group of intervals and other times with
another group, resulting in ESSs that are poor. In this case, it would be more
prudent to inspect the population size for each interval (which is not possible in
Tracer yet).

The ESS is important if you are interested in the sample of trees as well. At
the moment we do not have a way of directly examining the ESS of the tree or
the clade frequencies. Therefore, it is crucial that the continuous parameters and
likelihoods have adequate ESS to demonstrate good mixing of the MCMC.

Increasing ESS: These are some ways of increasing the ESS of a parameter:
• The most straight-forward way of increasing the ESS is to increase the chain

length. This obviously requires more computer resources and may not be prac-
tical.
• If only a few items get low ESSs, generally you want to reduce the weight on

operators that affect parameters that are getting very high ESSs and increase
weights on operators operating on the low ESS items.
• You can increase the sampling frequency. The ESS is calculated by measuring

the correlation between sampled states in the chain which are the entries in
the log file. If the sampling frequency is very low these will be uncorrelated.
This will be indicated by the ESS being approximately equal to the number
of states in the log file (minus the burn-in). If this is the case, then it may
be possible to improve the ESSs by increasing the sampling frequency until
the samples in the log file begin to be autocorrelated. Sampling too frequently
will not affect the ESSs but will increase the size of the log file and the time
it takes to analyse it.
• Combine the results of multiple independent chains. It is a good idea to do

multiple independent runs of your analyses and compare the results to check
that the chains are converging and mixing adequately. If this is the case then
each chain should be sampling from the same distribution and the results could
be combined (having removed a suitable burn-in from each). The continuous
parameters in the log file can be analysed and combined using Tracer. The
tree files will currently have to be combined manually using a text editor or

D
RA

FT
14-7

-2
014

150 Posterior analysis and post-processing

LogCombiner. An advantage of this approach is that the different runs can
be performed simultaneously on different computers (say in a computer lab or
nodes on a cluster) or on different processors in a multi-processor machine.

When to combine log files: A common question is whether it is acceptable
to use an estimate of say, MRCA time, from the combined analysis of three
identical runs (from different random seeds) if the ESS is > 200 for all parameters
in the combined file (but not in each individual file) in Tracer.

Three runs combined to give an ESS of > 200 is probably safe but you need to
be a little bit careful. Ten runs to get an ESS of> 200 is probably not safe because
if individual runs are given ESS estimates of about 20 then there is a question
of whether those ESS estimates are valid at all. You should visually inspect that
your runs are giving essentially the same answers for all the parameters as well
as the likelihood and prior. The traces should substantially overlap and be given
basically the same mean and variance. If your runs give traces that do not overlap
then you cannot combine them no matter what the combined ESS says.

If the ESSs of two runs you want to combine are substantially different (say
more than a factor of 2) then you should be concerned because it probably means
that the distributions in the two runs are significantly different, so that at least
one of them has not converged or you have not removed enough burn-in.

When Tracer combines two traces it just reports the sum of the ESS of the
two runs. However if you combine the two runs using LogCombiner and then
look at the ESS in Tracer then Tracer will treat the combined run as a single run
and calculate the ESS based on the autocorrelation. If for example the two runs
have each gotten stuck on a different local optimum with different distributions,
then Tracer will detect that the first half of the concatenated trace is different
from the second half and will report an unacceptable low ESS. However if you
combined these two within Tracer, it would just add the ESSs and everything
would appears to be fine. Note that when combining logs in LogCombiner and
not enough burn-in is removed, this may result in unrealistic ESSs. Make sure
the combined log looks like all samples are from the same distribution to make
sure that the combined log does not contain burn-in. Burn-in that is not removed
shows up as discontinuities in the trace plot.

Bi-modal traces: Tracer can plot a density diagram showing the marginal
posterior distribution in a graph. When inspecting the posterior distribution of
a parameter of interest, also have a look at the prior on the parameter. The
difference between the two shows how much the data informs the parameter
estimate. The comparison between the two is easier when the priors are carefully
chosen. Preferably, use proper priors and not so diffuse that it is hard to estimate
the prior density at parameter values of interest.

Typically, the marginal posterior distribution will be shown as a uni-modal
distribution. One reason for seeing bimodal traces is that the prior is too strong
and the data does not agree with the prior. To solve this problem, allow a less
narrow prior. Another possibility is that there are multiple partitions with linked

D
RA

FT
14-7

-2
014

10.1 Trace log file interpretation 151

trees and one partition supports a different tree from one of the other partitions.
The chain will then be jumping between these topologies. To see whether this
is the problem, you can run the analysis with each partition separately and see
whether there is large support for particular trees. This assumes of course that
there is no technical issue like mislabelling of the sequences in the lab.

Mean and its standard error: Another useful set of statistics provided by
Tracer is the mean, and standard deviation of the mean. This is the standard de-
viation of the sample mean, or standard error, defined as the standard deviation
of the sample divided by the square root of the sample size. Note that instead
of using the actual number of samples, the ESS is used as sample size since the
samples are correlated and the ESS is an estimate of the sample size that corrects
for the correlation. If the ESS is small then the standard deviation will be large
and vice versa. Also, note that the standard error applies only to the mean and
does not say anything about the standard deviation of the posterior.

x% HPD interval: Tracer shows the 95% highest posterior density (HPD)
interval of every item that is in the log. In general, the x% HPD interval, is the
smallest interval that contains x% of the samples. If one tail is much longer than
the other then most of the removed values will come from the longer tail.

The x% central posterior density (CPD) interval, on the other hand, is the
interval containing x% of the samples after [(100-x)/2]% of the samples are
removed from each tail. The shorthand for both types of interval is the x%
credible interval.

Note that the HPD interval of the posterior contains information of the prior.
If the prior is strong and puts a lot of mass close to zero for say the standard
deviation of a relaxed clock model, then the data may not be sufficiently informa-
tive to pull the parameter away from zero and at least some of the posterior will
be placed close to zero. So, be aware that the prior is reflected in the posterior
HPD interval.

Clock rate units: Tracer shows the mean of the posterior but not the units.
The units for the clock rate depends on the units used for calibrations. When
a calibration with say a mean of 20 is used representing a divergence date 20
million years ago, the clock rate is in substitutions per site per million year. If
all digits are used, that is 20,000,000 or 20E6 for the mean of the calibration, the
clock rate unit will be substitutions/site/year. If the calibration represents 20
years ago, the unit is substitutions/site/year. Likewise, units for MRCA times
and tree height are dependent on the units used to express timing information;
with a calibration of 20 representing 20 million years ago, an MRCA time or tree
height of 40 means a time of 40 million years ago.

If there is no timing information, by default, the clock rate is not estimated
and fixed at 1, and branch lengths represent substitutions per site. Of course,
if the clock rate is estimated a prior on the clock rate needs to be provided
and the units for clock rate is equal to the units used for the clock rate prior.
Alternatively, the clock rate can be fixed to a value other than 1 if an estimate is
available from the literature or from an independent dataset. The ages of nodes in

D
RA

FT
14-7

-2
014

152 Posterior analysis and post-processing

the tree is in units of time used for the clock rate. A clock rate of 0.1 representing
0.1 substitutions/site/million year implies a tree height of 2 is 2 million years
old.

Tree height and MRCA time: To interpret tree height and MRCA times
in Tracer, you have to keep in mind that time runs backwards in BEAST by
default. If there are no tip dates, zero is the most recently sampled sequence
and the root height of the tree at say 340, represents the most recent common
ancestor of all sequences, at 340 years (assuming your units are in years) in the
past.

If you have a taxon with two virus samples, one from the year 2000 and one
from the year 2005 and you get an MRCA time value of 10, these viruses diverged
in 1995. Note that MRCA time is counted from the youngest taxon member.

Coefficient of variation: With relaxed clock models a coefficient of vari-
ation is logged, which is defined as the standard deviation divided by mean of
the clock rate. The coefficient gives information about how clock-like the data
is. A coefficient of 0.633 means that we estimated that the rate of evolution of
the different lineages in the analysis varied by 63.3% of the clock rate. Values
closer to zero indicate the data is more clock like and a strict clock may be more
appropriate. There is no strict rule, but values below 0.1 are generally considered
to be strong evidence for a strict clock. Also, the posterior distribution showing
a graph where the 95% HPD is hugging up against zero is an indication that
strict clock model cannot be rejected. Using a strict clock for clock-like data has
the advantage of requiring fewer parameters and increases precision of rate esti-
mates (Ho et al. 2005) and topological inference (Drummond et al. 2006) while
accuracy is not compromised. If the value of the coefficient of variation is 1.0 the
variance is as great as the mean and a relaxed clock is more appropriate.

A relaxed clock with exponential distribution of rates across branches will
always have a coefficient of variation of 1.0. It is a one parameter distribution
and the parameter determines both the mean and the variance. The only reason
that BEAST returns a number slightly under one is because of the way the
distribution is discretised across the branches in the tree. So you should ignore
the ESS estimates for this statistic when using the exponential model. If you do
not think that the coefficient of variation is about one for your data, then you
probably should not use the exponential model.

Rates for clades: Rates for clades are not logged in the trace log but can
be found in the tree log. You can calculate a summary tree with TreeAnnotator
and visualize the rates for a clade in FigTree.

10.2 Model selection

In Section 9.5, we already looked at comparing models using Bayes factors. Here
we look at strategies for comparing the various substitution models, clock models
and tree priors.

D
RA

FT
14-7

-2
014

10.2 Model selection 153

Model selection strategy: The first rule to take into account when selecting
a model is not to use a complex model until you can get a simple model working.
A good starting point is the HKY substitution model, with strict clock and a
constant population size coalescent tree prior (if you want a coalescent tree prior,
otherwise start with Yule instead). If you cannot get the chain working then there
is no point in going further. Working means running 2 to 4 independent chains
long enough that they give the same answers and have large enough ESSs. If
you can get this working then add the parameters you are interested in. For
example, if you want to get some information around population size change, try
BSP with small number of groups (say 4) or EBSP, which finds the number of
groups. You should probably add gamma rate heterogeneity across sites to your
HKY model once everything else is working.

The important thing about model choice is the sensitivity of the estimated
parameter of interest to changes in the model and prior. So in many respects it
is more important to identify which aspects of the modelling have an impact on
the answer you care about than to find the ‘right’ model.

You could argue that a ‘correct’ analysis would compare all possible combi-
nations of demographic, clock and substitution models, assuming your state of
knowledge beforehand was completely naive about the relative appropriateness
of the different models. But we think that is often over the top. Some work is
under way averaging over all the substitution models automatically within the
MCMC analysis. For example, the model from (Wu et al. 2013) is implemented
in the subst-BMA package and simultaneously estimates substitution model and
partitioning of the alignment. The reversible-jump based model (Bouckaert et al.
2013) is a substitution model that jumps between models in a hierarchy of mod-
els, and is available through the RBS package as the RB substitution model. It
can also automatically partition the alignment, but unlike subst-BMA assumes
that partitions consist of consecutive sites. One can average over clock models
(Li and Drummond 2012) in an MCMC analysis as well.

For the standard models (HKY, GTR, gamma categories, invariant sites) using
ModelTest (Posada and Crandall 1998) or jModelTest (Posada 2008) is probably
a reasonable thing to do if you feel that time is a precious commodity. However if
you have protein-coding sequences then you could try a codon-position model by
splitting the alignment into codon positions and based on a Bayes factor decide
between it and the model that ModelTest chooses.

One pleasant aspect of Bayesian inference is that it is easier to take into ac-
count the full range of sources of uncertainty when making a decision, like choos-
ing a substitution model. With a Bayes factor you will be taking into account
the uncertainty in the tree topology in your assessment of different substitution
models, whereas in ModelTest you typically have to assume a tree (usually a
neighbour joining tree). While this may not be too important, Yang et al. (1995)
argue that if the tree is reasonable then substitution model estimation will be
robust), the Bayesian method is definitely more satisfying in this regard.

A disadvantage of ModelTest for protein-coding sequences is that it does not

D
RA

FT
14-7

-2
014

154 Posterior analysis and post-processing

consider the best biological models, those that take into account the genetic
code, either through a full codon model (generally too slow computationally to
estimate trees) or by partitioning the data into codon positions. See Shapiro et
al. (2006), for empirical evidence that codon position models are far better than
GTR plus gamma categories plus invariant sites on average, and just as fast if
not faster.

As far as demographic models are concerned, it is our experience that they do
not generally have a great effect on the ranking of substitution models.

Strict vs relaxed clock: The comparison between log-normal relaxed and
strict is relatively easy. Use a log-normal relaxed clock first. If there is no ap-
preciable probability mass near zero in the marginal posterior distribution of
the coefficient of variation (see also Section 10.1) of the relaxed clock then you
cannot use a strict clock. However if the marginal distribution extends down to
about zero, then the data cannot be used to reject a strict clock. Alternatively,
the random local clock model (Drummond and Suchard 2010) can be used as a
Bayesian test of the strict molecular clock. If the random local clock indicates
no rate changes in a significant proportion of the time, the data is compatible
with a strict clock.

Constant vs Exponential vs Logistic population: To select a popu-
lation function for a coalescent tree prior, use exponential growth first. If the
marginal posterior distribution of the growth rate includes zero, then your data
is compatible with constant size.

If you are only doing a test between exponential growth and constant then you
can simply look at the posterior distribution of the growth rate and see if zero is
contained in the 95% HPD. If it is, then you cannot reject a constant population
based on the data. Of course this is only valid if you are using a parametrisation
that allows negative growth rates.

Parametric coalescent with fixed tree: If you are keeping the tree fixed
(See ‘fixed topology’ in Section 7.3) you are treating the tree as data and the
coalescent should be treated as part of the model instead of as part of the prior.
So the appropriate marginal likelihood to compare between models is the product
of the tree likelihood and the coalescent likelihood (or more practically, the sum
of the log tree likelihood and log coalescent likelihood). You will actually need to
sum the log likelihood and the coalescent columns of the log file (for example, in
a spreadsheet) and then calculate a Bayes factor on this summed column. This
summed column will be the same as the posterior column only if you have not
got any other interesting priors in the analysis (like lognormal calibrations etc.).
Rather than risk including any of the priors in the marginal likelihood calculation
by mistake we would recommend summing the likelihood and coalescent in a
spreadsheet and then making a new log file with one column for calculating the
marginal likelihood.

Constant population vs Skyline with fixed tree: Note that comparing
different coalescent models in the above way relies on their likelihoods being
calculated to the same proportionality constant. We believe this to be the case

D
RA

FT
14-7

-2
014

10.2 Model selection 155

for all coalescent models in BEAST. However you should note that the Bayesian
skyline plot has an extra smoothing prior that must not be included in the
marginal likelihood calculation, so do not use the posterior as a short-cut for the
likelihood as outlined above.

For the BSP, Tracer can show credible intervals for all population sizes simul-
taneously. When the first and last interval do not overlap, this suggests that
there is some change in population size over time, hence the constant popula-
tion size model is not appropriate. Note that this is not formal support because
the various intervals are dependent random variables and comparing credible
intervals only works for independent random variables.

Alternative *BEAST species trees: Suppose you have two alternative as-
signments of sequences to species in a *BEAST analysis, and you want to choose
one of the species trees. If your observations were actually gene trees instead
of sequence alignments then it would be straightforward: the species.coalescent
likelihoods would be the appropriate likelihoods to be comparing by Bayes Fac-
tors. However since we do not directly observe the gene trees, but only infer them
from sequence alignments, the species.coalescent likelihoods are not likelihoods
but rather parametric priors on gene trees, where we happen to care about the
parameters and structure of the prior, that is, the species tree topology and the
assignments of individuals to species.

If you are considering two possible species tree assignments and the posterior
distributions of the species.coalescent from the two runs are not overlapping,
then you can pick the model that has the higher posterior probability, assuming
the species.coalescent is computed up to the same constant for differing numbers
of species and species assignments.

Comparing MRCA times: If you want to compare the MRCA times for
two (non overlapping) clades, say A and B, probably the best approach is to
simply ask how often the MRCA time of clade A is older than that of the B.
There is no tool to do this, but it is easy enough to load the trace log where the
MRCA times are reported into a spreadsheet. Copy the two columns of interest
in a new sheet, and in the third column use ”=IF(A1>B1, 1, 0)” and take the
average over the last column. This gives you P (A > B|D) where D is the data .

As always, it is important to not only report the posterior support for A > B

but also the prior support. Without this, the value of P (A > B|D) is meaningless,
since the prior can be set up to support any hypothesis over another. If no special
priors are added, we would expect the prior P (A > B) to be 0.5 if A and B are
of the same size, indicating 50% of the time one clade should be higher than the
other. P (A > B) can be calculated with the same procedure used to calculate
P (A > B|D), but this time with the sample from the prior. The Bayes factor is
then calculated as P (D|A)

P (D|B) = P (A>B|D)(1−P (A>B))
(1−P (A>B|D))P (A>B) (Suchard et al. 2001), which

can be interpreted using Table 9.1.
Testing monophyly of a clade: Since the prior probability of a particular

clade (given a uniform distribution on labelled histories) is relatively easy to
compute, the Bayes factor for a particular clade is also easy to compute from

D
RA

FT
14-7

-2
014

156 Posterior analysis and post-processing

Labelled histories with AB grouping Labelled histories without AB grouping

((A, B),C),D) ((A, C),B),D) ((B, D),C),A)
((A, B),D),C) ((A, C),D),B) ((C, D),A),B)
((A, B):1,(C,D):2) ((A, D),B),C) ((C, D),B),A)
((A, B):2 (C,D):1) ((A, D),C),B) ((A, C):1,(B,D):2)

((B, C),A),D) ((A, C):2 (B,D):1)
((B, C),D),A) ((A, D):1,(B,C):2)
((B, D),A),C) ((A, D):2 (B,C):1)

Table 10.1 Balanced labelled rooted trees of four taxa are represented by two labelled
histories, depending on which cherry is older

the prior and the posterior clade probabilities. For example in BEAST, the prior
probability of the (A,B) grouping in a four taxa tree of (A,B,C,D) is 4/18 = 2/9,
because 4 of the 18 possible labelled histories have the AB grouping, as shown
in Table 10.1.

However, if there are many calibrations, the prior of the tree will not be uni-
form. In such cases, you can run your model by sampling from the prior and use
TreeLogAnalyser or DensiTree to find the clade probability of interest. Note that
sampling from the prior may require considerable more samples than sampling
from the posterior since the space that needs to be sampled is very large if the
priors used are very broad. Fortunately, evaluating each state takes a lot less
computational effort than when sampling the full posterior.

Testing Robustness of analysis against different priors: It is always a
good idea to test whether the outcomes of the analysis is informed by the data,
or just a reflection of the prior. If you suspect that the data has no effect on
the parameters of interest, the easiest way to test this is by running the same
analysis but sample from the prior. If the marginal likelihoods of the parameters
are indistinguishable in Tracer, the data may in fact not give support to the
analysis. To be sure, you can re-run the analysis with a different prior, say with
a different mean. If there is still no difference between the prior and posterior
sample (but now with the estimates changed due to the difference in the prior)
you should be aware the data does not inform your estimate.

10.3 Trouble shooting

There are a large number of potential problems running an MCMC analysis. In
this section, we will have a look at some of the more common issues and how to
solve them.

Miss-alignment and model misspecification: Two general issues are tech-
nical difficulties with the alignment and model misspecification. Any of these two
can result in surprising results. A quick test to see whether the alignment has
some issues is to construct a neighbour joining tree and look at the amount

D
RA

FT
14-7

-2
014

10.3 Trouble shooting 157

of evolution by inspecting the average distance from root to tips. Path-O-gen1

(Rambaut 2010) can be useful to show more formally how well divergence cor-
relates with time of sampling. If there is no structure, this might indicate that
some sequences are out of alignment or recombinant sequences, causing larger
divergence times than expected. As a consequence estimates for any of the pa-
rameters of interest may be different as well. Finally, though it is tempting to
‘fit an elephant’ (Steel 2005) model misspecification is something that can be
addressed by model comparison as outlined in Sections 10.2 and 9.5.

Non starting: BEAST might not start because the initial state has a posterior
probability of zero, which means there is no way to proceed the chain. If this
happens, BEAST will print out all components that make up the posterior, and
the first one that is marked as negative infinity is the component that should be
investigated closer.

There are several reasons why the posterior can be calculated as zero (hence
the log posterior as −∞). When using hard bounds in calibrations you need to
ensure that the starting tree is compatible with the bounds you have specified.
In BEAST 2, randomly generated trees are automatically adjusted to these con-
straints, if they are compatible. The priors can be incompatible if a calibration
on a sub-clade has a lower bound that is higher than the upper-bound of a cal-
ibration on a super-clade. In this situation no tree exists that fits both these
constraints. If for some reason no random starting tree can be found and the
calibrations are compatible, you could provide a starting tree in Newick format
that is consistent with the calibrations. If such a starting tree is inconsistent,
BEAST will start with a log posterior that is −∞ and stop immediately.

Another reason for BEAST to stop at the start is when the initial tree is far
from the optimum. Then, the tree likelihood will be too small since the data
does not fit the tree, and the tree likelihood will run into numeric problems and
returns 0 (hence −∞ in log space). To prevent this happening, a better starting
tree could be a UPGMA or neighbour joining tree, or a fixed tree in Newick
format that obeys all calibration constraints.

When using an initial clock rate that is many orders of magnitude smaller
than the actual clock rate, it can happen that underflow occurs when scaling
the branch lengths to units of substitution. A potential reason is that some
calibrations are in different units, say millions of years, while the clock rate is in
another unit, say years. This is easily fixed by choosing a different starting value
for the clock rate.

When BEAST does not start and the coalescent likelihood is reported as −∞,
this probably means that the growth rate is initially so high (or low) that there
are numerical issues calculating the coalescent likelihood.

Chain does not converge: If there are a lot of sequences in the alignment,
you need to run a very long chain, perhaps more than 100 million states. Al-
ternatively, you can run a large number of shorter chains, say 20 millions states

1 Available from http://tree.bio.ed.ac.uk/software/pathogen.

http://tree.bio.ed.ac.uk/software/pathogen

D
RA

FT
14-7

-2
014

158 Posterior analysis and post-processing

on 10 computers. Though a systematic quantitative analysis awaits to be done,
in our experience the chain length needs to increase quadratically in the num-
ber of sequences. So, if you double the number of sequences then you need to
quadruple the length of the chain to get the same ESS. Thus, you could analyse
a sub-sample of, say, 20 sequences and use this to estimate how long a chain you
need to analyse 40 or 80 or 160 sequences and obtain the same ESS. In general
if you have much more than 100 sequences you should expect the analysis to
involve a lot of computation and doing multiple runs and combining them is a
good idea.

One reason a chain does not converge is when the posterior is bi-modal. Mixing
for bi-modal posteriors can take a long time because the operators can have
difficulty finding a path through sample space between the different modes. Since
the ESS is chain length divided by auto correlation time (ACT) and the ACT
can be very large for bi-modal traces, the ESS will be very small. By check the
graph in Tracer it is immediately obvious whether there is a trend in the trace,
or whether the posterior is actually bi-modal.

Another reason for lack of convergence is model misspecification, which can
be addressed by model comparison as outlined in the previous section. Finally, if
the model is unidentifiable, for example because both clock rate and substitution
rate are estimated at the same time when analysing a single partition, there is
no reason to expect the chain to converge. A model can be made identifiable by
choosing fewer parameters to estimate.

In general, more complex models with more parameters converge slower be-
cause each parameter will be changed less often by operators. Hence, parameter
rich models require more samples to reach the same ESS. There are many more
reasons a chain does not converge that are specific to some models. Some of these
model specific problems will be addressed below.

Sampling from prior does not converge: Sampling from the prior is
highly recommended in order to be able to check how the various priors interact.
Unfortunately, the space that needs to be sampled for the prior tends to be a lot
larger than the posterior space. Therefore, it may take a lot more samples for
convergence to be reached when sampling from the prior than when sampling the
posterior. It is not uncommon for the difference between the number of samples
to be one or two orders of magnitude. Fortunately, evaluating the prior takes a
lot less time than evaluating the posterior, so the prior chain should run a lot
faster.

When improper priors are used the run on the prior may get stuck in a part of
space that it cannot escape due to numeric issues. For example, with a OneOnX
prior on a rate, this rate will be driven towards zero, and once it is zero a
scale operator (which is a default operator for most parameters) has no way of
proposing a positive number. Likewise, parameter values may become very large
and get fixed at positive or negative infinity from where no operator can propose
a finite value. Therefore we recommend using proper priors.

Issues with BSP analysis: When running a BSP analysis, it is not uncom-

D
RA

FT
14-7

-2
014

10.3 Trouble shooting 159

mon to see low ESS values for group sizes. The group size is the number of steps
in the population size function. These are integer values, and group sizes tend
to be highly auto-correlated since they do not change value very often. Unless
there is an obvious trend over time as shown in the graph of the chain it is safe
to ignore the low ESSs.

Note that with a BSP you cannot estimate more population size changes than
there are coalescent intervals in your tree. So, BSP does not work well for align-
ments with a small number of sequences. This can be fixed by reducing the
number of groups from the default of 5 to less than or equal to n − 1, where n
is the number of sequences in the alignment. When there is low variability in
the sequences, the estimates for MRCAs will contain large uncertainties and the
skyline plot will be hard to reconstruct. So, expect the BSP to fail when there
are only a handful of mutations in sequences.

Estimating highly parametric demographic functions from single gene align-
ments of just a handful of sequences is not likely to be very illuminating. For the
single-population coalescent, sequencing more individuals will help, but there is
very little return for sequencing more than 20-40 individuals. Longer sequences
are better as long as they are completely linked (for example, the mitochondrial
genome). Another approach is to sequence multiple independent loci and use a
method that can combine the information across multiple loci (like EBSP).

Issues with population estimates: When estimating population size using
coalescent with constant population size, you have to be aware that it is quite
well possible that priors on one aspect of the model have considerable impact
on estimates in other parts of the model. Since it is not possible to know which
prior suits beforehand, care and attention is required in setting up priors. With
sufficient data, the prior will be overridden and the data will inform rate of
evolution, tree height and the demographic process. Since it is straightforward
to sample from the prior, one should always run a MCMC to see what the effect
of interacting priors are.

Demographic reconstruction fails: Two common reasons for Tracer to fail
when performing a demographic reconstructions are firstly, there is No ’End;’
at the end of tree log. This can be fixed easily by adding a line to the log with
’End;’ in a text editor. Secondly, Tracer fails when the sample frequencies of
trace log and tree file differ. The file with the highest frequency can be sub-
sampled using LogCombiner.

Relaxed clock gone wrong: Sometimes, models using the relaxed clock
model take a long time to converge. In general, they tend to take longer than
strict clock model using otherwise the same settings. See tips on increasing ESS
in the Section 10.1 on some techniques to deal with this.

When a relaxed clock model does converge, but the coefficient of variation is
much larger than one, this may be an indication something did not go well. A
coefficient of variation of 0.4 is already a lot of variation in rates from branch to
branch, especially in an intra-species data set. Having a coefficient of variation
(note that this is in log space) of much larger than one represents an incredible

D
RA

FT
14-7

-2
014

160 Posterior analysis and post-processing

large amounts of branch rate heterogeneity and if that were really the case it
would be very hard to sample from the posterior distribution due to the strong
correlations between the divergence times and the highly variable branch rates.
It would be of not much use to try to estimate divergence times under these
circumstances. This problem can occur due to a prior on standard deviation
when using the log normal relaxed clock that is too broad. It may also be due
to failure to converge, which can be tested by rerunning the analysis a few times
to see whether the same posterior estimates are reached. to be generated by the
same underlying evolutionary rate.

If you are looking mostly at intra-species data then the uncorrelated relaxed
clock is not recommended. Perhaps a random local clock might fit better, since
one would expect most of the diversity within a species to be generated by the
same underlying evolutionary rate.

Rate estimate gone wrong: If you only have isochronous sequences, that
is, all sampled from the same time, and you do not have any extra calibration
information on any of the internal nodes nor a narrow prior on clock rates, then
there is nothing you can do in BEAST that will create information about rates
and dates. If you try to estimate a rate in such situation and use a uniform prior,
you will probably find in your set up – depending on your tree prior – that the
posterior distribution is skewed and bunched up against one or the other bound-
ary of your uniform prior. This does not mean that there is signal in the data to
inform the rate. Since without calibrations the data has no information about
the absolute substitution rate, the posterior distribution of the substitution rate
will just reflect your actual joint prior when the tree prior and rate priors are
considered together. If you switch between a coalescent prior, or ‘no’ tree prior’
(which is in fact a prior) we suspect you will see quite a big difference in the
posterior distribution of the rate.

If you are looking at fast evolving species such as HIV or influenza, then 17
years of sampling is more than enough to get very good estimates of the rate
of evolution. However if you are looking at slow evolving species like humans
or mice, this is not sufficient a time interval for a decent estimate. On the face
of it a large (say 7%) pairwise differences may suggest that there should be
enough information to estimate rates, assuming those differences cannot all be
attributed to ancestral polymorphism. One issue is that with very low rates like
for mammals, all tip dates become effectively contemporaneous and we end up
in the situation with (almost) no tip time and no calibration information. As
a consequence, the model space becomes very large and difficult to explore and
convergence times will become unacceptably large.

Viruses like HIV and influenza have substitution rates of about 10−3 (Lemey
et al. 2004), however other viruses can evolve a lot slower, some as slow as 10−8

(Duffy et al. 2008). For those slow evolving viruses there is the same issue as for
mammals, and BEAST will not be able to estimate a rate based on samples that
have been just a few decades apart. This shows up in the estimate of the root
height having 95% HPDs that are very large. If the data reflects rates that are

D
RA

FT
14-7

-2
014

10.3 Trouble shooting 161

too slow to estimate, the posterior of the rate estimate should equal the prior, as
is indeed the case with BEAST when using simulated data (Firth et al. 2010).
Real data can contain different signals causing the rate estimates to be too high
though.

Another factor is the number of sampling times available. For example, if
you only have two samples (one 17 years before the other) and the old and new
sequences are reciprocally monophyletic with respect to each other, then you will
not be able to reliably estimate the rate because there is no way of determining
where along the branch between the two clusters the root should go. In this
situation, the tree topology can have a large effect on the rate estimate as well.

One thing you should remember about a Bayesian estimate is that it includes
uncertainty. So even if the point estimates of a rate are quite different, they are
not significantly different unless the point estimate of one analysis is outside the
95% HPD of another analysis with a different prior. In other words, the point
estimates under different priors may be different just because the estimates are
very uncertain.

Ancestral state reconstruction: An ancestral state reconstruction might
not converge because the effect of ancestral state reconstruction using Bayesian
stochastic variable selection (BSVS) on ESS values is that the ESS decreases
compared to ancestral state reconstruction without BSVS for a chain of the
same length. The reason is that a lot more parameters are used, thus more
operators are required and each operator is selected less often and parameters
are changed less frequently. To increase ESSs of parameters that get low ESSs,
you can reduce the weight of operators on parameters that are getting very high
ESSs, and increase weights on poorly performing parameters. Also, increase the
chain length as necessary.

Another reason an ancestral state reconstruction may fail is that the prior on
the clock rate of the trait is not appropriate, which can have an adverse effect
on the tree height. If so, it may be useful to have a look at the sensitivity of your
analysis to this prior.

A discrete phylogeographical reconstruction, which effectively is the same as
an ancestral state reconstruction, can fail when there are too many discrete
states for the number of tips. Note that the geographic information can be seen
as an alignment with just a single site. Consequently, if there are many locations
compared to the number of taxa, there will be very little signal in the data. Apart
from changing the prior as outlined above, one way to deal with this problem
is to merge some of the states and change the coding. For example, the three
states England, Scotland, and Wales could be merged into a single state Great
Britain, thus reducing the number of states by two.

Eigenvalues not converged: When BEAST reports that eigenvalues have
not converged, it means there is not enough information in the data to determine
rates. For example, when using the GTR model on a small partition with few
patterns, there might not be sufficiently many A to C transversions to be able
to estimate the A to C rate. Using a simpler substitution model like HKY will

D
RA

FT
14-7

-2
014

162 Posterior analysis and post-processing

solve this issue. The same problem can occur with an analysis involving discrete
traits or a discrete phylogeographical analysis when there are too many discrete
states and too few taxa. A tighter prior on the number of non-zero rates might
help in this situation.

Conflicting calibration and rate prior: It is possible to have timing
information (that is, calibration or tip dates) but the substitution rate is fixed
in the analysis. If the rate is considerably different from the rate indicated by
the data, you will not be able to do divergence time estimation with a node
calibration. In BEAST, branch lengths are described by the product of rate and
time. If you try to fix both the rate (say to 1) and the time (by putting a strong
prior on the root height) then there is the potential to get a strong conflict.
When a chain has to accommodate such a mismatch, this manifests itself in
poor convergence, unrealistic estimates in parameter values and unexpected tree
topologies.

Tracer out of memory: Tracer reads the complete log file into memory
before processing it, and it can run out of memory in the process. The log
files increase proportional to the number of samples. For very long runs the log
intervals should be increased so that the total number of entries that end up
in the log is about 10,000. So, for a run of 50 million, log every 5000 samples.
An alternative is to use LogCombiner to down-sample an existing log file before
using it in Tracer.

D
RA

FT
14-7

-2
014

11 Exploring phylogenetic tree space

A Bayesian phylogenetic MCMC analysis produces one or more tree log files
containing a sample of trees from the posterior distribution. The MCMC algo-
rithm produces a chain of states, and these are autocorrelated, so that in general
two adjacent states in the chain are not independent draws from the posterior
distribution. Thus a critical element of evaluating the resulting chain of sampled
trees from a Bayesian phylogenetic MCMC analysis is determining whether the
chain is long enough to be representative of the full posterior distribution over
tree space (Nylander et al. 2008). In general it is not trivial to quantify MCMC
exploration of phylogenetic tree space (Whidden et al. 2014) and careful inves-
tigation can reveal unexpected properties. Research into efficient sampling of
tree space, including improving existing MCMC algorithms is an active field of
enquiry (Höhna and Drummond 2012; Lakner et al. 2008; Whidden et al. 2014).
In this chapter we will primarily consider what one does after a representative
posterior sample of trees has been obtained. In practice this stage is reached by
running a long enough chain (or multiple chains) so that standard diagnostic
tests are passed, and then taking a regular subsampling of the full chain(s) as
your resulting posterior sample (i.e. the contents of the tree log file(s)).

The main methods for dealing with such a posterior tree set are

(i) listing the most commonly (co-)occurring clades/topologies,
(ii) summarising the common clades/features in a single summary tree,
(iii) constructing a phylogenetic network that contains the common clades/trees,
(iv) performing multidimensional scaling using a tree metric,
(v) visualising the sample of trees in a tree space graph, and
(vi) visualising the sample of trees using DensiTree (Bouckaert 2010).

In this chapter, we briefly review these methods and compare them. The meth-
ods are judged on their ability to clarify properties of the posterior sample, and
in particular whether they can highlight areas of certainty and uncertainty in
both divergence times and tree topology. We will pay special attention to sum-
mary trees and DensiTrees. Visualising phylogenies and phylogenetic tree space
are active areas of research (Graham and Kennedy 2010; Procter et al. 2010;
Whidden et al. 2014).

As an illustrative example, we use sequences from Anolis, a genus of lizards
belonging to the family Polychrotidae. Two examples of this beautifully coloured

D
RA

FT
14-7

-2
014

164 Exploring phylogenetic tree space

Figure 11.1 Two specimen of anolis lizard. Left, A. biporcatus from Costa Rica (photo
by Steven G. Johnson). Right, A. carolinensis detail of head.

lizard are shown in Figure 11.1. The alignment1 can be found in the BEAST
directory with NEXUS examples and has been published in (Jackman et al.
1999). There are 55 taxa and the nucleotide alignment has 1456 sites (Matrix
M3924 in TreeBase). To produce the tree set, the first 1035 sites were partitioned
into codon positions 1, 2 and 3. The remaining sites code for a tRNA gene.
The substitution model used for each of the four partitions was GTR with 4
gamma-distributed site rate categories. Furthermore, a strict molecular clock
and coalescent tree prior with exponential population growth were used.

11.1 Tree Set Analysis Methods

In this section, we consider some tree set analysis methods that work equally
well for both rooted and unrooted trees.

11.1.1 Credible sets of phylogenetic trees

For data sets that are well resolved, one might consider reporting not a single
summary tree, but instead a set of topologies that together account for a large
fraction of the posterior probability. This is known as a credible set of tree
topologies and 95% is often used as the threshold fraction. The 95% credible set
of topologies is the smallest set of topologies whose total posterior probability is
≥ 0.95.

For example for the primate analysis from Chapter 6, the 95% credible set
contains a single tree topology. For Anolis, the most probable topology has a
posterior probability of 0.0164 (i.e. 1.64% of the sampled trees). The 95% credible
set consists of 8066 unique topologies, making the 95% credible set less useful
for the Anolis analysis.

D
RA

FT
14-7

-2
014

11.1 Tree Set Analysis Methods 165

A B C D A C B D A B C D

Figure 11.2 Small example of a tree set.

11.1.2 Clade Sets

A non-graphical method of tree set analysis is achieved by inspecting the pos-
terior support for clades (Mau et al. 1999), for instance by listing the most
frequently occurring clades. For the tree set consisting of the three trees in Fig-
ure 11.2 the clade that groups taxa {A,B,C} occurs three times, but the clades
{A,B}, {A,C} and {B,C} occur only once each. In this approach, a list of clades
ordered by frequency are generated and the most frequently occurring clades in-
terpreted as the ones best supported by the data. The proportion of times a
subset of taxa appears as a monophyletic group in the posterior sample is a
Monte Carlo estimate of the clade’s posterior probability. These are sometimes
termed posterior clade probabilities or posterior clade support. The problem with
this approach is that, C(n), the number of potential non-trivial clades (i.e. strict
subsets of taxa of size ≥ 2), grows exponentially with the number of taxa, n:
C(n) = 2n − n− 2.

Although the posterior support can often be localised in a small fraction of
tree space, if everything else is equal we may well assume that the clades with
significant posterior support might also grow roughly exponentially with the
number of taxa analysed. When there are many closely related taxa in a data
set, the number of clades appearing in 5% or more of the posterior sample can
easily be in the hundreds or thousands. Obviously, such clade sets would be
hard to interpret without good visualisation. Another problem is that credible
sets only provide information about the uncertainty in the tree topology, and
do not inform about the uncertainty in divergence times, unless each clade is
additionally annotated with information about the posterior distribution of the
age of the clade’s most recent common ancestor (e.g. 95% HPD intervals).

As an illustration, the Anolis tree set consists of 18000 trees (20K trees minus
10% burn-in) and has 8967 unique topologies. More comfortingly, the 5% credible
set of topologies contains only 57 non-trivial clades, while the 50% credible set
includes only 106 non-trivial clades. These both out of an approximately 36
million billion possible clades for a 55 taxa tree. So, while there are a large
1 Available from http://purl.org/phylo/treebase/phylows/study/TB2:S603?format=html.

http://purl.org/phylo/treebase/phylows/study/TB2:S603?format=html

D
RA

FT
14-7

-2
014

166 Exploring phylogenetic tree space

number of tree topologies, a relatively small number of clades dominate the tree
distribution. There are 41 clades that are contained in over 90% of the trees. For
example A. angusticeps and A. paternus form a clade that occurs in all trees in
the set.

It is easy to provide a list of these clades (for example, with the TreeLog-
Analyser tool in BEAST), and other tree set statistics, but such data is hard to
interpret, and it does not give much intuition about the overall structure of the
data. However, it can be useful for testing whether a clade is monophyletic (see
Section 10.2).

11.1.3 Conditional clades

An improved method to estimate the posterior probability of individual tree
topologies has been recently suggested (Höhna and Drummond 2012; Larget
2013), that is especially good when the posterior distribution is diffuse, or when
one is interested in the probability of improbable trees. Instead of using the
simple Monte Carlo estimate (i.e. the proportion of times the tree is sampled in
the chain), one can use the product of the probabilities of the conditional clades
that the tree is composed of. These conditional clade probabilities are calculated
by simple Monte Carlo estimates. However because the number of conditional
clades is much smaller than the number of trees for large n, the estimates of
conditional clade probabilities are expected to be more accurate than direct
Monte Carlo estimates of individual tree topologies. This approach also allows
the estimation of the posterior probability of trees that were not sampled, as
long as the conditional clades that the tree is composed of are present in the
posterior sample.

11.1.4 Neighbor Networks

A neighbour network (Bryant and Moulton 2004) is a graph that contains the
topologies of all trees that occur at sufficiently high frequency in the tree set.
Where this results in alternative topologies, extra edges are created in the net-
work. This way, the uncertainty in the topology is graphically represented in the
figure. Figure 11.3 shows the neighbour network we get when drawing the three
tree example mentioned of Figure 11.2 in the top left corner. The uncertainty of
the topology is immediately clear from the image. To see whether the same holds
for Anolis lizards, the image also shows the Anolis data as drawn with SplitsTree
(Huson and Bryant 2006).

The image indicates a that there are two groups separated by a large branch.
The lack of uncertainty in the topology would indicate that there is very little
disagreement in the underlying trees, something not quite expected from the
statistics mentioned in the clade set approach in the previous section. Another
issue is that uncertainty in node height is not easily visualized in neighbour

D
RA

FT
14-7

-2
014

11.1 Tree Set Analysis Methods 167

Figure 11.3 Neighbour nets – top left corner shows the net for the set from Figure 11.2
and the remainder is for the Anolis tree set.

networks and the root location is lost. In fact, the network lost most timing
information that is available in rooted trees.

11.1.5 Multi Dimensional Scaling

Multi dimensional scaling is a technique for visualizing items in a data set when
there is a distance metric defined between these items (Amenta and Klingner
2002; Hillis et al. 2005). In our situation, these items are individual trees and
there are distance metrics between trees, such as the minimum number of tree
edit operations required to convert one topology in another, or the average dif-
ference in pairwise path length of the trees. See (Heled and Bouckaert 2013) for
more on timed tree metrics. Figure 11.4 shows the visualization of the anolis
data, drawn with the method from (Hillis et al. 2005). Each tree represents a
point in the image and the farther two points are apart, the greater the dissim-
ilarity of the associated trees. Though this works fairly well when the trees are
well resolved, in the case of the anolis data every tree in the sample has a unique
topology and as a result the image looks like white noise and the different groups
are not visible in the picture. Furthermore, it is not possible to judge uncertainty
in node height from the image, nor is the topology shown.

D
RA

FT
14-7

-2
014

168 Exploring phylogenetic tree space

Figure 11.4 Multi dimensional scaling result for the anolis tree set.

11.2 Summary Trees

There are many ways to construct a summary tree, also known as consensus tree,
from a set of trees. See the excellent review of Bryant (2003) for a few dozen
methods. Most of these methods create a representation of the tree set that are
not necessarily good estimator of the phylogeny (Barrett et al. 1991). A few of
the more popular options are the following.

The majority rule consensus tree is a tree constructed so that it contains all
of the clades that occur in at least 50% of the trees in the posterior distribution.
In other words it contains only the clades that have a posterior probability of
≥ 50%. The extended majority tree is a fully resolved consensus tree where
the remaining clades are selected in order of decreasing posterior probability,
under the constraint that each newly selected clade be compatible with all clades
already selected. It should be noted that it is quite possible for the majority
consensus tree to be a tree topology that has never been sampled and in certain
situations it might be a tree topology with relatively low probability, although
it will have many features that have quite high probability. Holder et al. (2008)
argue that the majority rule consensus tree is the optimal tree for answering the
question “what tree should I publish for this group of taxa, given my data?”
assuming a linear cost in the number of incorrect and missing clades with higher
cost associated to missing clades.

The maximum clade credibility (MCC) tree produced by the original version
of TreeAnnotator is the tree in the posterior sample that has the maximum sum
of posterior clade probabilities. A more natural candidate, and current default
of TreeAnnotator, is the tree with the maximum product of the posterior clade
probabilities, instead of its sum. Note that this method guarantees that the
summary tree is contained in the tree set, and is often shown in BEAST based
publications. Empirical experiments show that MCC trees perform well on a
range of criteria (Heled and Bouckaert 2013).

The term maximum a posteriori tree or MAP tree has a number of interpre-
tations. It has sometimes been used to describe the tree associated with the
sampled state in the MCMC chain that has the highest posterior probability

D
RA

FT
14-7

-2
014

11.2 Summary Trees 169

density (Rannala and Yang 1996). This is problematic, because the sampled
state with the highest posterior probability density may just happen to have
extremely good branch lengths on an otherwise fairly average tree topology. A
better definition of the MAP tree topology is the tree topology that has the
greatest posterior probability, averaged over all branch lengths and substitution
parameter values. For data sets that are very well resolved, or have a small num-
ber of taxa, this is easily calculated by just determining which tree topology
has been sampled the most often in the chain. However for large data sets it is
quite possible that every sampled tree has a unique topology. In this case, the
alternative definition of maximum credibility tree above can be used.

A natural candidate for a point estimate is the tree with the maximum prod-
uct of the posterior clade probabilities, the so called maximum credibility tree.
To the extent that the posterior probabilities of different clades are additive, this
definition is an estimate of the total probability of the given tree topology, that
is, it provides a way of estimating the maximum a posteriori tree (MAP) topol-
ogy. Höhna and Drummond (2012) and Larget (2013) introduces a method to
estimate posterior probabilities of a tree based on conditional clade probabilities.
Though interesting from a theoretical point of view, in practice summary trees
constructed based on conditional clade probabilities do not perform well (Heled
and Bouckaert 2013).

To define a median tree, one must first define a metric on tree space. This turns
out to be quite a difficult task to perform, but there are number of candidate
metrics described in the literature. Visualize the trees in the posterior sample
as a cluster of points in a high-dimensional space, then the median tree is the
tree in the middle of the cluster - the median tree has the shortest average
distance to the other trees in the posterior distribution. With a metric defined
(say the Robinson-Foulds distance (Robinson and Foulds 1981)), a candidate for
the median tree would be the tree in the posterior sample that has the minimum
mean distance to the other trees in the sample.

Once a tree topology or topologies are found that best summarises a Bayesian
phylogenetic analysis, the next question is what divergence times (node heights)
to report. One obvious solution is to report the mean (or median) divergence
time for each of the clades in the summary tree. This is especially suitable for
the majority consensus tree and the maximum credibility tree, however defined.
For the median tree, it should be noted that some metrics, that is, those that take
account of branch lengths and topology, allow for a single tree in the sample to be
chosen that has the median topology and branch lengths. Likewise, if the MAP
sampled state is the chosen tree topology, then the associated branch lengths of
the chosen state can be reported.

Instead of constructing a single summary tree, a small set of summary trees
can be used to represent the tree set (Stockham et al. 2002).

D
RA

FT
14-7

-2
014

170 Exploring phylogenetic tree space

Figure 11.5 Single consensus tree of the anolis tree set, with bars representing
uncertainty in node height.

11.2.1 Tools for Summary Trees

TreeAnnotator is a tool provided with BEAST to generate summary trees. It
can create a tree with the topology of the tree set with highest product (or
sum) of clade probabilities or annotates a user provided tree. Sometime, the
summary tree has negative branch lengths. This happens when the clade used
to estimate a node height contains just a few trees. Then, height estimates have
large variability and nodes can be assigned a height that is higher than its parent
resulting in negative branch lengths. Note that this is not a software bug but
more than anything, this is an indication that there is large uncertainty in the
tree topology and node height estimates.

FigTree2 is a very useful tool for visualising summary trees and producing
high quality output ready for publication. FigTree can export PDF which can
be converted to SVG and imported into drawing programs such as Coral Draw
to add annotations manually. Another useful function of FigTree is that it allows
converting files to Newick format; load a tree, choose export and specify the tree
format.

2 FigTree is available from http://tree.bio.ed.ac.uk/software/figtree/.

http://tree.bio.ed.ac.uk/software/figtree/

D
RA

FT
14-7

-2
014

11.2 Summary Trees 171

TreeAnnotator only annotates those clades that occur with a certain support
in the tree set. This assures that 95% HDP intervals will be reasonably accurate,
since 95% HDP intervals will have very high variance when estimated from the
information of just a few tree examples. Consequently, some 95% HDP intervals
may not show up when visualising the tree in FigTree.

Figure 11.5 shows a consensus tree produced with TreeAnnotator and visu-
alised in FigTree for the anolis data. The tree is annotated with bars representing
uncertainty in node heights. This shows it is possible to make uncertainty in node
heights visible. However, it is not quite clear whether the source of this uncer-
tainty is due to uncertainty in node heights or because there is no certainty in the
underlying topology. For example, the consensus tree of the three trees example
of Figure 11.2 would be any of the trees in the set, but with high uncertainty
on the node heights for the common ancestors of clade (A,B,C). Suppose the
first tree in Figure 11.2 is chosen as topology, then the 95% HPD interval for the
height with many methods will be of size zero, since the interval will be based on
all (A,B) clades in the tree set, and this clade only occurs once. This illustrates
the danger of basing estimates on only the clades occurring in the summary tree,
and ignoring other information in the tree set.

Uncertainty in topology does not show up in the consensus tree. An alternative
is to label the tree nodes with the support in the tree set. In this case, every node
would have a number attached with the number of trees that contain the clade
associated with that node. A low number could indicate low consensus in the
topology. For the anolis tree, most branches have support of over 90% indicating
most of the tree topology is strongly supported by the data. However, for those
branches with lower support, it is not clear what the alternative topologies are.
In summary, distinguishing between uncertainty in topology and uncertainty in
branch lengths requires careful examination of the tree and its annotations.

Algorithms for generating summary trees that use not only those clades in the
posterior that are found in the summary tree but use all clades were developed
recently (Heled and Bouckaert 2013). These algorithms do not suffer from neg-
ative branch lengths. An implementation is available in biopy (available from
https://code.google.com/p/biopy), which is integrated with DensiTree (see
next section). One set of algorithms tries to match clade heights as closely as pos-
sible, resulting in large trees with long branches. Another set of algorithms tries
to match branch lengths. These methods have a tendency to collapse branches
that have little clade support, but tend to have higher likelihood on the original
data used in simulation experiments.

The common ancestor heights algorithm determines the height of nodes in a
summary tree by using the average height of the summary tree clades in the trees
of the tree set. This method tends to do well in estimating divergence times and
is fast to compute (Heled and Bouckaert 2013). Since the height of a node of
a clade is always at least as high as any of its sub-clades, this guarantees that
all branch lengths are non-negative. It is the default setting in TreeAnnotator in
BEAST 2.2.

https://code.google.com/p/biopy

D
RA

FT
14-7

-2
014

172 Exploring phylogenetic tree space

Anolis_acutus
Anolis_stratulus
Anolis_cristatellus
Anolis_krugi
Anolis_brevirostris
Anolis_distichus
Anolis_bimaculatus
Anolis_wattsi
Anolis_ahli
Anolis_ophiolepis
Anolis_sagrei
Anolis_garmani
Anolis_grahami
Anolis_valencienni
Anolis_lineatopus
Anolis_humilis
Anolis_limifrons
Anolis_lineatus
Anolis_alutaceus
Anolis_vanidicus
Anolis_angusticeps
Anolis_paternus
Anolis_sheplani
Anolis_carolinensis
Anolis_maynardi
Anolis_loysiana
Anolis_pumilis
Anolis_marcanoi
Anolis_strahmi
Anolis_barahonae
Anolis_christophei
Anolis_cuvieri
Chamaeleolis_chamaeleonides
Chamaeleolis_guamuhaya
Anolis_lucius
Anolis_etheridgei
Anolis_insolitus
Anolis_olssoni
Chamaelinorops_barbouri
Anolis_aliniger
Anolis_coelestinus
Anolis_bahorucoensis
Anolis_bartschi
Anolis_vermiculatus
Anolis_equestris
Anolis_luteogularis
Anolis_occultus
Anolis_aeneus
Anolis_richardi
Anolis_luciae
Phenacosaurus_nicefori
Anolis_agassizi
Anolis_microtus
Diplolaemus_darwinii
Polychrus_acutirostris

Figure 11.6 DensiTree of the anolis tree set. Bars indicate 95% HPD of the height of
clades. Only clades with more than 90% support have their bar drawn.

11.3 DensiTree

A DensiTree (Bouckaert 2010) is an image of a tree set where every tree in the
set is drawn transparently on top of each other. The result is that areas where
there is large consensus on the topology of the tree shows up as distinct fat
lines while areas where there is no consensus shows as blurs. The advantage of
a DensiTree is that it is very clear where the uncertainty in the tree set occurs,
and no special skills are required to interpret annotations on the tree.

Figure 11.6 shows the DensiTree for the anolis data, together with a consensus
tree. The image clearly shows there is large consensus of the topology of the trees
close to the leaves of the tree. Also, the outgroup consisting of the clade with
Diplolaemus darwinii and Polychrus acutirostris at the bottom of the image is
clearly separated from the other taxa. Again, this might not quite be what is
expected from the large number of different topologies in the anolis tree set
noted in Section 11.1.2. Where the topology gets less certain is in the middle, as
indicated by the crossing line in the DensiTree.

D
RA

FT
14-7

-2
014

11.3 DensiTree 173

Consider the clade just above the outgroup consisting of A. aeneus, A. richardi,
A. luciae, Phenacosaurus nicefori, A. agassizi, and A. microtus. The first three
form a solid clade, say clade X, and the last two, say clade Y, as well. However, it
is not clear where P. nicefori fits in. There are three options; P. nicefori split off
before the other two clades, clade X split off before P. nicefori and clade Y, or
clade Y split off before P. nicefori and clade X. There is support in the data for
all three scenarios, though the last scenario has most support with 50%, judging
from the 50% clade probability consisting of clade X and P. nicefori. Further,
there is 35% support for the first scenario leaving 15% support for the second
scenario. So, where the summary tree shows the most likely scenario, there are
two other scenarios in the 95% credible set of scenarios and these are visualised
in the image.

However, when a lot of taxa are closely related there can be a lot of uncertainty
inside clades. This is shown in Figure 11.7, which shows the tree set for Dengue-4
virus. Many samples were used in this analysis that only differ a few mutations
from other sequences in the allignment. Consequently, there is large uncertainty
in the topology of the tree close to the leaves. This is reflected in the DensiTree by
the cloud forming around closely related taxa. On the other hand, the remainder
of the tree that is not close to the leaves is very well supported by the data. Bars
are drawn for those clades that have over 90% support, and all clades higher up
in the summary tree are marked with a bar, so they have over 90% support.

A DensiTree highlights the uncertainty in node heights, both by the distribu-
tion of the lines forming the trees and bars on the nodes indicating 95% HPD
node heights. Furthermore, a DensiTree highlights the uncertainty in topology
and often a few clear alternatives are highlighted. It gives some intuition what
a tree distribution produced by a BEAST analysis actually is. So, a DensiTree
shows structure and uncertainty in topology and node heights. However, some
trees contain just not enough structure and other methods, in particular sum-
mary trees, can help visualising the little structure that is available.

Some applications of DensiTree can be found in (Chaves and Smith 2011;
Dincă et al. 2011; McCormack et al. 2011).

D
RA

FT
14-7

-2
014

174 Exploring phylogenetic tree space

D4/DM/M44/1981

D4/PR/M15/FEB-1982
D4/PR/M5/FEB-1982
D4/PR/M21/FEB-1982
D4/PR/M3/FEB-1982

D4/PR/M16/FEB-1982

D4/PR/M25/FEB-1982
D4/PR/M7/FEB-1982
D4/PR/M24/FEB-1982

D4/PR/M10/1982
D4/PR/M12/FEB-1982
D4/PR/M13/FEB-1982
D4/PR/M9/FEB-1982
D4/PR/M4/FEB-1982

D4/PR/M20/FEB-1982

D4/PR/M33/1985
D4/PR/1/DEC-1987

D4/PR/9/FEB-1987

D4/PR/60/AUG-1987
D4/PR/69/OCT-1987
D4/PR/66/SEP-1987

D4/PR/M32/1985

D4/PR/M34/1985
D4/PR/M42/OCT-1986

D4/PR/8/MAR-1987

D4/PR/M36/1985

D4/PR/114/1985
D4/PR/5/FEB-1987

D4/PR/67/SEP-1987

D4/PR/M37/1985
D4/PR/116/MAY-1986
D4/PR/117/AUG-1986

D4/PR/63/AUG-1987
D4/PR/73/OCT-1987
D4/PR/64/SEP-1987
D4/PR/65/AUG-1987

D4/PR/M31/1985

D4/PR/12/NOV-1998
D4/PR/14/MAR-1998
D4/PR/18/MAR-1998
D4/PR/19/MAR-1998
D4/PR/20/JUN-1998

D4/PR/17/FEB-1998
D4/PR/45/APR-1998

D4/PR/13/JAN-1998
D4/PR/47/MAY-1998

D4/PR/84/JUL-1994

D4/PR/15/MAR-1998
D4/PR/46/APR-1998
D4/PR/48/JUN-1998

D4/PR/44/AUG-1998
D4/PR/85/JUL-1994

D4/PR/107/NOV-1990

D4/PR/28/DEC-1992

D4/PR/29/DEC-1992
D4/PR/35/SEP-1992

D4/PR/34/MAY-1992

D4/PR/94/DEC-1990
D4/PR/93/DEC-1990

D4/PR/24/DEC-1992
D4/PR/26/NOV-1992

D4/PR/41/OCT-1992
D4/PR/37/AUG-1992

D4/PR/25/NOV-1992
D4/PR/30/NOV-1992
D4/PR/27/NOV-1992
D4/PR/31/NOV-1992
D4/PR/32/NOV-1992
D4/PR/42/OCT-1992

D4/PR/76/AUG-1994
D4/PR/77/SEP-1994
D4/PR/78/AUG-1994
D4/PR/80/JUL-1994
D4/PR/89/AUG-1994
D4/PR/82/SEP-1994
D4/PR/79/AUG-1994
D4/PR/87/AUG-1994
D4/PR/81/AUG-1994
D4/PR/83/SEP-1994

D4/PR/72/OCT-1987
D4/PR/62/AUG-1987

D4/PR/97/JAN-1991
D4/PR/115/JUL-1986

D4/PR/M35/1985

D4/PR/3/FEB-1987
D4/PR/36/AUG-1992

D4/PR/96/DEC-1990
D4/PR/86/JUL-1994

D4/PR/88/AUG-1994

Figure 11.7 DensiTree of the Dengue-4 tree set. Bars as in Figure 11.6.

D
RA

FT
14-7

-2
014

Part III

Programming

D
RA

FT
14-7

-2
014

D
RA

FT
14-7

-2
014

12 Getting started with BEAST 2

BEAST is software for performing a wide range of phylogenetic analysis. The
vision we have for BEAST is that it provides tools for computational science
that are

1 easy to use, that is, well documented, have intuitive user interfaces with small
learning curve.

2 open access, that is, open source, open XML format, facilitating reproducibility
of results, and runs on many platforms.

3 easy to extend, by having extensibility in its design.

We limit the scope of BEAST to efficient Bayesian computation for sequence
data analysis involving tree models. Making BEAST easy to use is one of the
things that motivated writing this book. The code is set up to encourage docu-
mentation that is used in user interfaces like BEAUti. By dividing the code base
in a core set of classes that can be extended by packages (Chapter 15), we hope
that it will be easier for new developers to learn how to write new functionality
and perform new science. Further help and documentation is available via the
BEAST 2 wiki 1.

We want BEAST to be open access (Vision 2) and therefore it is written in
Java, open source and licensed under the Lesser GNU Public License.2 BEAST
2 typically runs as a standalone application, by double-clicking its icon (in
modern operating systems) or started from the command line with java -jar
beast.jar. A BEAST 2 XML file should be specified as the command line argu-
ment. XML files are used to store models and data in a single place. The XML
format is an open format described in Chapter 13.

Since we want the system to be extensible (Vision 3), everything in the system
implements BEASTInterface. The BEASTObject class provides a basic implemen-
tation and many classes in BEAST derive from BEASTObject. We will say that
an object is a BEAST-object if it implements BEASTInterface and and object is
a BEASTObject if it derives from BEASTObject. Every BEAST-object can spec-
ify inputs to connect with other BEAST-object, which allows for flexible model
building. Input objects contain information on type of the input and how they
are stored in BEAST XML files. To extend the code, you write Java classes that
1 http://beast2.org/wiki
2 The BEAST 2 source code can be downloaded from http://beast2.org.

http://beast2.org/wiki
http://beast2.org

D
RA

FT
14-7

-2
014

178 Getting started with BEAST 2

implement BEASTInterface by deriving from the BEASTObject class, or deriving
from any of the more specialized classes that subclass BEASTObject. But before
we get into the gory details of writing BEAST-objects, let us first have a guided
tour of BEAST 2.

12.1 A quick tour of BEAST 2

state

distribution

operator

logger

mcmctree

data

tree

siteModel

treeLikelihood

sequence
alignment

gammaCategoryCount=1

substModel

siteModel

JC69

Figure 12.1 Example of a model specifying Jukes Cantors substitution model (JC69).
It shows BEAST-objects represented by rocket shapes connected to other
BEAST-objects through inputs (the thrusters of the rocket).

Figure 12.1 shows (part of) a model, representing a nucleotide sequence anal-
ysis using the Jukes Cantor substitution model. The ‘rockets’ represent BEAST-
objects, and their ‘thrusters’ the inputs. Models can be build up by connecting
BEAST-objects through these inputs with other BEAST-objects. For example,
in Figure 12.1, the SiteModel BEAST-object has a JC69 substitution model
BEAST-object as input, and Tree, SiteModel and Alignment are inputs to the
TreeLikelihood BEAST-object. The TreeLikelihood calculates the likelihood
of the alignment for a given tree. To do this, the TreeLikelihood also needs at
least a SiteModel as input, and potentially also a BranchRateModel (not nec-
essary in this example and a strict clock is assumed by default). The SiteModel
specifies everything related to the transition probabilities for a site from one node
to another in the Tree, such as the number of gamma categories, proportion of
invariant sites and substitution model. In Figure 12.1, Jukes Cantor substitution
model is used. In this Section, we extend this with the HKY substitution model
and show how this model interacts with the operators, state, loggers and other
bits and pieces in the model.

To define the HKY substitution model, first we need to find out what its inputs
should be. The kappa parameter of the HKY model represents a variable that
can be estimated. BEAST-objects in the calculation model (that is, the part of
the model that performs the posterior calculation) are divided into StateNodes
and CalculationNodes. StateNodes are classes an operator can change, while
CalculationNodes are classes that change their internal state based on Inputs.

D
RA

FT
14-7

-2
014

12.1 A quick tour of BEAST 2 179

state

distribution

operator

logger

mcmc

value=1.0
kappa

tree

data

tree

siteModel

treeLikelihood

sequence
alignment

gammaCategoryCount=1

substModel

siteModel

kappa

frequencies

hky

data
freqs

Figure 12.2 Example of a model specifying a HKY substitution model.

The HKY model is a CalculationNode, since it internally stores an eigenvalue
matrix that is calculated based on kappa. Kappa can be changed by an operator
and does not calculate anything itself, so the kappa parameter is a StateNode.

The other bit of information required for the HKY model is the character
frequencies. These can be calculated from the alignment or estimated using a
parameter, so Frequencies is a CalculationNode. Compare Figure 12.2 with
Figure 12.1 to see how the HKY model differs from the JC model. Section 12.2
has implementation details for BEASTO-oject classes like HKY.

state

distribution

operator

logger

mcmc

value=1.0
kappa

tree

data

tree

siteModel

treeLikelihood

sequence
alignment

gammaCategoryCount=1

substModel

siteModel

kappa

frequencies

hky

data
freqs

parameter

scaleFactor=0.5

weight=1.0

kappaScaler

t ree

scaleFactor=0.5

weight=1.0

treeScaler
t ree

weight=10.0

Uniform

t ree

weight=5.0

SubtreeSlide

t ree

weight=1.0

narrow

isNarrow=false

tree

weight=1.0

wide

t ree

weight=1.0

WilsonBalding

Figure 12.3 Adding operators.

In an MCMC framework, operators propose a move in a state space, and
these are then accepted or rejected based on how good the moves are. Figure
12.3 shows the HKY model extended with seven operators: six for changing the
tree and one for changing the kappa parameter.

The operators work on the tree and the kappa parameter. Any StateNode that
an operator can work on must be part of the State (Figure 12.4). Apart from
the State being a collection of StateNodes, the State performs introspection on

D
RA

FT
14-7

-2
014

180 Getting started with BEAST 2

state

distribution

operator

logger

mcmc

stateNode

storeEvery=100000

State

value=1.0
kappa

tree

data

tree

siteModel

treeLikelihood

sequence
alignment

gammaCategoryCount=1

substModel

siteModel

kappa

frequencies

hky

data
freqs

parameter

scaleFactor=0.5

weight=1.0

kappaScaler

t ree

scaleFactor=0.5

weight=1.0

treeScaler
t ree

weight=10.0

Uniform

t ree

weight=5.0

SubtreeSlide

t ree

weight=1.0

narrow

isNarrow=false

tree

weight=1.0

wide

t ree

weight=1.0

WilsonBalding

Figure 12.4 Adding the state.

the model and controls the order in which BEAST-objects are notified of changes
and which of them should store or restore their internal state. For example, if an
operator changes the Tree, the HKY model does not need to be bothered with
updating its internal state or storing that internal state since it never needs to
be restored based on the tree change alone.

state

distribution

operator

logger

mcmc

stateNode

storeEvery=100000

State

value=1.0
kappa

tree

data

tree

siteModel

treeLikelihood

sequence
alignment

gammaCategoryCount=1

substModel

siteModel

kappa

frequencies

hky

data
freqs

parameter

scaleFactor=0.5

weight=1.0

kappaScaler

t ree

scaleFactor=0.5

weight=1.0

treeScaler
t ree

weight=10.0

Uniform

t ree

weight=5.0

SubtreeSlide

t ree

weight=1.0

narrow

isNarrow=false

tree

weight=1.0

wide

t ree

weight=1.0

WilsonBalding

fi leName=test.$(seed).log

log

logEvery=10000

model

ScreenLogger

fi leName=test.$(seed).trees

log

logEvery=10000

TreeLogger

log

logEvery=10000

model

TraceLogger

Figure 12.5 Adding the loggers.

For the MCMC analysis to be any use, we need to log the results. Loggers take
care of this task. Loggers can log anything that is Loggable, such as parameters
and trees, but it is easy enough to write a custom logger and add it to the list of
inputs of a Logger (Figure 12.5). Typically, one logger logs to standard output,

D
RA

FT
14-7

-2
014

12.2 BEAST core: BEAST-objects and inputs 181

one to a log file with parameter values (a tab delimited file that can be analysed
with Tracer) and one log file with trees in Newick format.

state

distribution

operator

logger

mcmc

stateNode

storeEvery=100000

State

value=1.0
kappa

tree

data

tree

siteModel

treeLikelihood

sequence
alignment

taxon=human

value=
 AGAAATATGTCTGATAAAAGAGTTACTTTGATAGAGTAAATAATAGGAGCTTAAACCCCCTTATTTCTACTAGGACTATGAGAATCGAACCCATCCCTGAGAATCCAAAATTCTCCGTGCCACCTATCACACCCCATCCTAAGTAAGGTCAGCTAAATAAGCTATCGGGCCCATACCCCGAAAATGTTGGTTATACCCTTCCCGTACTAAGAAATTTAGGTTAAATACAGACCAAGAGCCTTCAAAGCCCTCAGTAAGTTG-CAATACTTAATTTCTGTAAGGACTGCAAAACCCCACTCTGCATCAACTGAACGCAAATCAGCCACTTTAATTAAGCTAAGCCCTTCTAGACCAATGGGACTTAAACCCACAAACACTTAGTTAACAGCTAAGCACCCTAATCAAC-TGGCTTCAATCTAAAGCCCCGGCAGG-TTTGAAGCTGCTTCTTCGAATTTGCAATTCAATATGAAAA-TCACCTCGGAGCTTGGTAAAAAGAGGCCTAACCCCTGTCTTTAGATTTACAGTCCAATGCTTCA-CTCAGCCATTTTACCACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAACCCCATGGCCTCCATGACTTTTTCAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAATTATAGGCT-AAATCCTATATATCTTA-CACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTTAAAGATTAAGAGAACCAACACCTCTTTACAGTGA

Sequence

taxon=chimp

value=
 AGAAATATGTCTGATAAAAGAATTACTTTGATAGAGTAAATAATAGGAGTTCAAATCCCCTTATTTCTACTAGGACTATAAGAATCGAACTCATCCCTGAGAATCCAAAATTCTCCGTGCCACCTATCACACCCCATCCTAAGTAAGGTCAGCTAAATAAGCTATCGGGCCCATACCCCGAAAATGTTGGTTACACCCTTCCCGTACTAAGAAATTTAGGTTAAGCACAGACCAAGAGCCTTCAAAGCCCTCAGCAAGTTA-CAATACTTAATTTCTGTAAGGACTGCAAAACCCCACTCTGCATCAACTGAACGCAAATCAGCCACTTTAATTAAGCTAAGCCCTTCTAGATTAATGGGACTTAAACCCACAAACATTTAGTTAACAGCTAAACACCCTAATCAAC-TGGCTTCAATCTAAAGCCCCGGCAGG-TTTGAAGCTGCTTCTTCGAATTTGCAATTCAATATGAAAA-TCACCTCAGAGCTTGGTAAAAAGAGGCTTAACCCCTGTCTTTAGATTTACAGTCCAATGCTTCA-CTCAGCCATTTTACCACAAAAAAGGAAGGAATCGAACCCCCTAAAGCTGGTTTCAAGCCAACCCCATGACCTCCATGACTTTTTCAAAAGATATTAGAAAAACTATTTCATAACTTTGTCAAAGTTAAATTACAGGTT-AACCCCCGTATATCTTA-CACTGTAAAGCTAACCTAGCATTAACCTTTTAAGTTAAAGATTAAGAGGACCGACACCTCTTTACAGTGA

Sequence

taxon=bonobo

value=
 AGAAATATGTCTGATAAAAGAATTACTTTGATAGAGTAAATAATAGGAGTTTAAATCCCCTTATTTCTACTAGGACTATGAGAGTCGAACCCATCCCTGAGAATCCAAAATTCTCCGTGCCACCTATCACACCCCATCCTAAGTAAGGTCAGCTAAATAAGCTATCGGGCCCATACCCCGAAAATGTTGGTTATACCCTTCCCGTACTAAGAAATTTAGGTTAAACACAGACCAAGAGCCTTCAAAGCTCTCAGTAAGTTA-CAATACTTAATTTCTGTAAGGACTGCAAAACCCCACTCTGCATCAACTGAACGCAAATCAGCCACTTTAATTAAGCTAAGCCCTTCTAGATTAATGGGACTTAAACCCACAAACATTTAGTTAACAGCTAAACACCCTAATCAGC-TGGCTTCAATCTAAAGCCCCGGCAGG-TTTGAAGCTGCTTCTTTGAATTTGCAATTCAATATGAAAA-TCACCTCAGAGCTTGGTAAAAAGAGGCTTAACCCCTGTCTTTAGATTTACAGTCCAATGCTTCA-CTCAGCCATTTTACCACAAAAAAGGAAGGAATCGAACCCCCTAAAGCTGGTTTCAAGCCAACCCCATGACCCCCATGACTTTTTCAAAAGATATTAGAAAAACTATTTCATAACTTTGTCAAAGTTAAATTACAGGTT-AAACCCCGTATATCTTA-CACTGTAAAGCTAACCTAGCATTAACCTTTTAAGTTAAAGATTAAGAGGACCAACACCTCTTTACAGTGA

Sequence

taxon=gori l la

value=
 AGAAATATGTCTGATAAAAGAGTTACTTTGATAGAGTAAATAATAGAGGTTTAAACCCCCTTATTTCTACTAGGACTATGAGAATTGAACCCATCCCTGAGAATCCAAAATTCTCCGTGCCACCTGTCACACCCCATCCTAAGTAAGGTCAGCTAAATAAGCTATCGGGCCCATACCCCGAAAATGTTGGTCACATCCTTCCCGTACTAAGAAATTTAGGTTAAACATAGACCAAGAGCCTTCAAAGCCCTTAGTAAGTTA-CAACACTTAATTTCTGTAAGGACTGCAAAACCCTACTCTGCATCAACTGAACGCAAATCAGCCACTTTAATTAAGCTAAGCCCTTCTAGATCAATGGGACTCAAACCCACAAACATTTAGTTAACAGCTAAACACCCTAGTCAAC-TGGCTTCAATCTAAAGCCCCGGCAGG-TTTGAAGCTGCTTCTTCGAATTTGCAATTCAATATGAAAT-TCACCTCGGAGCTTGGTAAAAAGAGGCCCAGCCTCTGTCTTTAGATTTACAGTCCAATGCCTTA-CTCAGCCATTTTACCACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAACCCCATGACCTTCATGACTTTTTCAAAAGATATTAGAAAAACTATTTCATAACTTTGTCAAGGTTAAATTACGGGTT-AAACCCCGTATATCTTA-CACTGTAAAGCTAACCTAGCGTTAACCTTTTAAGTTAAAGATTAAGAGTATCGGCACCTCTTTGCAGTGA

Sequence

taxon=orangutan

value=
 AGAAATATGTCTGACAAAAGAGTTACTTTGATAGAGTAAAAAATAGAGGTCTAAATCCCCTTATTTCTACTAGGACTATGGGAATTGAACCCACCCCTGAGAATCCAAAATTCTCCGTGCCACCCATCACACCCCATCCTAAGTAAGGTCAGCTAAATAAGCTATCGGGCCCATACCCCGAAAATGTTGGTTACACCCTTCCCGTACTAAGAAATTTAGGTTA--CACAGACCAAGAGCCTTCAAAGCCCTCAGCAAGTCA-CAGCACTTAATTTCTGTAAGGACTGCAAAACCCCACTTTGCATCAACTGAGCGCAAATCAGCCACTTTAATTAAGCTAAGCCCTCCTAGACCGATGGGACTTAAACCCACAAACATTTAGTTAACAGCTAAACACCCTAGTCAAT-TGGCTTCAGTCCAAAGCCCCGGCAGGCCTTAAAGCTGCTCCTTCGAATTTGCAATTCAACATGACAA-TCACCTCAGGGCTTGGTAAAAAGAGGTCTGACCCCTGTTCTTAGATTTACAGCCTAATGCCTTAACTCGGCCATTTTACCGCAAAAAAGGAAGGAATCGAACCTCCTAAAGCTGGTTTCAAGCCAACCCCATAACCCCCATGACTTTTTCAAAAGGTACTAGAAAAACCATTTCGTAACTTTGTCAAAGTTAAATTACAGGTC-AGACCCTGTGTATCTTA-CATTGCAAAGCTAACCTAGCATTAACCTTTTAAGTTAAAGACTAAGAGAACCAGCCTCTCTTTGCAATGA

Sequence

taxon=siamang

value=
 AGAAATACGTCTGACGAAAGAGTTACTTTGATAGAGTAAATAACAGGGGTTTAAATCCCCTTATTTCTACTAGAACCATAGGAGTCGAACCCATCCTTGAGAATCCAAAACTCTCCGTGCCACCCGTCGCACCCTGTTCTAAGTAAGGTCAGCTAAATAAGCTATCGGGCCCATACCCCGAAAATGTTGGTTATACCCTTCCCATACTAAGAAATTTAGGTTAAACACAGACCAAGAGCCTTCAAAGCCCTCAGTAAGTTAACAAAACTTAATTTCTGCAAGGGCTGCAAAACCCTACTTTGCATCAACCGAACGCAAATCAGCCACTTTAATTAAGCTAAGCCCTTCTAGATCGATGGGACTTAAACCCATAAAAATTTAGTTAACAGCTAAACACCCTAAACAACCTGGCTTCAATCTAAAGCCCCGGCAGA-GTTGAAGCTGCTTCTTTGAACTTGCAATTCAACGTGAAAAATCACTTCGGAGCTTGGCAAAAAGAGGTTTCACCTCTGTCCTTAGATTTACAGTCTAATGCTTTA-CTCAGCCACTTTACCACAAAAAAGGAAGGAATCGAACCCTCTAAAACCGGTTTCAAGCCAGCCCCATAACCTTTATGACTTTTTCAAAAGATATTAGAAAAACTATTTCATAACTTTGTCAAAGTTAAATCACAGGTCCAAACCCCGTATATCTTATCACTGTAGAGCTAGACCAGCATTAACCTTTTAAGTTAAAGACTAAGAGAACTACCGCCTCTTTACAGTGA

Sequence

gammaCategoryCount=1

substModel

siteModel

kappa

frequencies

hky

data
freqs

parameter

scaleFactor=0.5

weight=1.0

kappaScaler

t ree

scaleFactor=0.5

weight=1.0

treeScaler
t ree

weight=10.0

Uniform

t ree

weight=5.0

SubtreeSlide

t ree

weight=1.0

narrow

isNarrow=false

tree

weight=1.0

wide

t ree

weight=1.0

WilsonBalding

fi leName=test.$(seed).log

log

logEvery=10000

model

ScreenLogger

fi leName=test.$(seed).trees

log

logEvery=10000

TreeLogger

log

logEvery=10000

model

TraceLogger

Figure 12.6 Adding the sequences. This forms a complete description of the model,
which can be executed in BEAST 2.

Finally, the Alignment consist of a list of Sequences. Each sequence object
containing the actual sequence and taxon information. This completes the model,
shown in Figure 12.6 and this model can be executed by BEAST 2.

However, this does not represent a proper Bayesian analysis, since no prior is
defined. We need to define one prior for each of the items that form the State,
in this case a tree and the kappa parameter of the HKY model. A posterior
is a Distribution that is the product of prior an likelihood, which themselves
are a Distribution. For such distributions there is the CompoundDistribution,
and Figure 12.7 shows the complete model with posterior, prior and likelihood
as CompoundDistribution BEAST-objects. The prior consists of a log-normal
prior on the kappa parameter and a Yule prior on the tree. Since the Yule prior
has a birth-rate that can be estimated, the birth rate parameter requires a prior
as well (and is part of the State, not shown in the figure). The prior on the birth
rate is a uniform prior in Figure 12.7.

12.2 BEAST core: BEAST-objects and inputs

One way of looking at BEAST is that it is a library consisting of two parts: an
MCMC library, which lives in the beast.core package, and an evolution library
in the beast.evolution package. Beast, BEAUti, SequenceGenerator and a
handful of other tools are applications built on top of these libraries, and the
application specific code is in the beast.app package. Since all computational
science heavily relies on mathematics, a beast.math package containing a variety
of mathematical functionality could not be evaded. There is also a package with

D
RA

FT
14-7

-2
014

182 Getting started with BEAST 2

state

distribution

operator

logger

mcmc

stateNode

storeEvery=1000

state

taxonset
Tree

alignment
TaxonSet

sequence
alignment

totalcount=4

taxon=Anolis_brevirostris

value=ATGAGCCCACTAATCCACACAATTATACTCTCAAGTCTAGCAACAGGCACTATTATTACTATATCTAGCCACCACTGACTAATAGCCTGAATTGGATTAGAAATTAACACACTAGCAATTATCCCCATCATTTCAACATCCCACCACCCACGATCAACAGAAGCTGCCACAAAATATTTCCTTACACAAGCAGCAGCCTCTGCCACCGTACTATTTTCTAGTATAATTAATGCCTGACAAACCGGAACATGAGACATCACTCAAATATCTTATGCACCATCCAACATACTTTTAACTATAGCACTCTCCATAAAGCTCGGACTAGCCCCGCTACACTTCTGACTTCCAGAGGTTCTTCAAGGCTCAACCCTACCCACCGCCCTCATTATTACCACATGGCAAAAACTAGCCCCTATAGCACTAATCTGCCTAACAATTAATAATCTTAACCCAGCAATCCTACTAATCTTAGGACTTTTATCCTCAACTATTGGGGGTTGGGCCGGCCTTAACCAAACACAAACCCGAAAAATTATAGCATATTCATCAATTGCCCACCTAGGATGAATAGCCGCAATCGCCTCAATCATAACAAACATCATAATTATAAACCTCCTAATTTACTTAATGATAACAACCGCCCTATTCTGCTCCCTAATCTTTTCAAAGTCAAAAACTATTCAAGATACAACAACCACCTGAGCCACATCCCCAATAATAACTATTACTACTGCGCTCTCATTATTATCATTAGGCGGACTTCCACCCCTAACAGGATTTGCACCAAAATGACTAATTCTAGAAGAGCTCACTACCCAAAACTTAATCCCCATAGCCGCTGTTATAGCCCTATTCTCACTTCTTAGCTTATTTTTTTACACTCGCCTAGTTTATACAACAACACTTACACTCCCGCCTAGCACACTTCAAACAAAATTTAAATGACGATTTAAACAGGCCCCACCAACCTCACCAATAACAATTTCATCAACAGCAGCCATCTTTCTTCTGCCTTTAGTACCTCTAATGTTGATAT-----AAAAACTTAGGAT-----AATAA---AACCGAGAGCCTTCAAAGCTTTAAAAAAGGGTGTAAACCCCTTAGTTTTTG------TAAGACTTGTGAGAGACTAACCCACATCTTCTGAATGCAACCCAAACACTTTAATTAAGCTAAAGCCTTC--ATGAATAGGCGGGCCTTGATCCCACGAAAA--TTTAATTAACAGCTAACTGCCCTAGCCAGCGGGCTTCTATTCG-CTTCTCCCGTACGGGAG-AAGCCCCGGAGCCTATT--GGGGCTCTTCTTCAAACTTGCATTTTGACGTAA----AACACCTCGAGGCTAT-----GATAAAGAAAGGACTTGAACCAATATGGGTAGGTTTACAGCCTACCACCT-AAACCTCGGTCACTTTACCTGTGTCTATTAATCGTTGA

seq_Anolis_brevirostris

totalcount=4

taxon=Anolis_cuvieri

value=ATGAGCCCAACAATTCTCTCAATCATTTTATCAAGCCTAGCAGCAGGAACAATTATTACAATAACAAGCTTTCATTGATTAATAGCCTGAATTGGACTAGAAATTAATACACTAGCAATTATTCCAATTATCTCAATAATACATCACCCACGATCTACAGAAGCAGCCACAAAATATTTTCTCACACAAGCAGCAGCATCAGCTATAATCCTGTTCTCAAGCATAATTAATGCTTGACAAACAGGGACATGAGATATTACCCAAATATATACTCCTCAATCTAACATTTTATTAACTATAGCCCTTGCCATAAAAATAGGATTAGCCCCAATACACTTCTGACTACCAGAAGTACTTCAAGGTTCAACCTTAAACGCTGCTCTTATTATTACCACATGACAAAAAATCGCCCCAATGTCATTAATTTATTTAACCATTAATAATTTATCAACAACAACCTTATTAACACTAGGATTAATTTCTTCAATATGAGGAGGATGAGCAGGCCTAAACCAAACACAAACCCGAAAAATCACAGCATACTCATCTATTGCTCACATTGGATGAATGGCTACAATTTCTTCAATTATAACAAATATTCTTATTATAAACCTATTAATTTATTTAATTATAACAATCTCTATATTTAACTCACTAATTTTATCCAAATCTAAAACTATTCAAGACACGTCAATGACATGAACATTATCTCCAATATTAACTATTATTACTATACTTACACTCTTATCATTAGGGGGATTACCACCACTAACCGGATTTATACCAAAATGACTAATTCTAGAAGAATTGACAACCCAAAACTTAACTTCACTAGCCGTAATCATAGCAATAACTGCCCTATTAAGCCTTTTTTTTTACTTACGACTAACATACACAACAACACTTACATTATCACCAAACACAACACAAACAAAATTTAAATGACGATTTAAACCAAATTTACCTACATATTTACTAATAATCTCCTCTACAACAACCATCTTACTTCTTCCACTAACCCCCTTAATAATTTACT-----AAAAACTTAGGTT---AACATA----AACCGAGAGCCTTCAAAGCTCAAAACAGGAGTCAAAAACTCTTAGTTTTTG------TAAGACTTGTAAAATACTAATTTACATCTTCTGAATGCAACTCAAACACTTTAATTAAGCTAAAGCCTAC--CTGAATAGGCGGGCCTTGATCCCACGACAA--ATTAATTAACAGCTAATTACCCAAACCAGCGGGCTTCTATTCG-CTTCTCCCGTACGGGAG-AAGGCCCGGAGCCCTTTT--GGGCTCTTCTTCAAATTTGCATTTTGACGTGAA----ACACTTCAGGACTTT-----GATAAAGAAGGGAATTAAACCAATGTAAGTAGGACTACAGCCTACCGCCT-AACATTCGGCCACTTTACCTGTGTTTATTAATCGTTGA

seq_Anolis_cuvieri

totalcount=4

taxon=Anolis_equestris

value=ATGAGCCCAACAATTTATTCAATTATCCTATCAAGCCTTGCAA?????ACAATTATTACTATAACCAGCCACCATTGACTAATAGCCTGA?TCGGATTAGAAATTAACACATTAGCAATTATCCCAATTATTTCAACATTACACCACCCACGATCCACAGAAGCCGCCACAAAATATTTCCTAACACAAGCAGCTGCTTCTGCTATAATTTTATTTTCTAGCATAACAAATGCTTGATACACAGGTACATGAGACATTACCCAAATATCAGCCAACCCCTCCCATATTATATTAACTATGGCACTTGCCATAAAACTAGGCCTAGCACCTCTACACTTCTGACTACCAGAAGTACTCCAAGGCTCAACCATAAAAACCGCATTCATCATTACAACATGACAAAAACTTGCCCCAATATCATTAATCTACCTCATTATTAATAACTTATCCCCCACACTTCTCCTCCTATTAGGACTAATATCATCTACTCTGGGAGGCTGAGGAGGACTAAACCAAACCCAAACCCGAAAAATCATAGCCTATTCATCAATCGCCCACCTAGGTTGAATAGCTACAATCTCTTCAATCATAACCAATATTCTTGTTATAAACCTATTACTTTATATAACTATGACAACATCAATATTTTTTACCCTTATTTTATCAAAATCTAAAACAATTCAAGATACAACTACCTCATGAACACTATCTCCATCCCTAACCATCATTATAATATTATCACTTCTCTCATTAGGCGGACTACCCCCCCTAAGTGGATTTATACCAAAATGATTAATCCTAGAAGAACT??????CCAAAATCTTCCCCCACTAGCCACTATTATAGCAATATCTGCCCTACTTAGCTTATTCTTTTATCTACGACTTACCTACACTACTACCCTAACAATCTCCCCTAATACCTTACAAACTAAATTTAAATGACGATTCAAACCTACGACCTCAACCCTACCAATAATAATCTTTACCCCATTAACTATTTTTATGTTACCACTAACACCAATAATCATCATAT-----AGAAACTTAGGTT---TAAATA----AACCAAGAGCCTTCAAAGCTCAAAATATGGATGAAAACCCCATAGTTTCTG-----CTAAGACTTGTAAAATACTAATTTACATCTCCTGAATGCAACTCAAATGCTTTTATTAAGCTAAAGCCTTC--CTGAATAGGAGGGCCTTGATCCCACAATAA--ATTAATTAACAGCTAATTACCCAAACCAGCGGGCTTCTATTCG-CTTCTCCCGTACGGGAG-AAGCCCCGGAGCCCTATT-GGGGCTCTTTTTCAAACTTGCATTTTGACGTGA----AACACTTCAGGGCTTT-----GATAAGAAAAGGAATTAAACCTAT??????AGGACTACAGCCTACCGCCT-AACACTCAGCCATCTTACCTGTGTCTATTAACCGTTA?

seq_Anolis_equestris

totalcount=4

taxon=Anolis_luteogularis

value=ATGAGTCCAACAATTTATTCAATTATTCTATCAAGCCTTGCAACAGGTACAATTATTACTATAACCAGCTACCATTGACTAATAGCCTGAGTCGGATTAGAAATTAACACATTAGCAATTATCCCAATTATTTCAACATTACACCATCCACGATCCACAGAAGCAGCCACAAAATACTTCCTAACACAAGCAGCTGCTTCTGCTATAATTTTATTTTCTAGCATAACAAATGCTTGATACACAGGTACATGAGACATTACCCAAATATCAGCTAACCCCTCCCATATTATATTAACCATAGCGCTTGCCATAAAACTAGGCCTAGCACCTCTACACTTCTGACTACCAGAAGTACTCCAAGGCCTAACCATAAAAACCGCATTCATCATTACAACATGACAAAAACTTGCCCCAATATCATTAATTTACCTCATTATTAATAACCTATCACCTATACTTCTCCTCCTATTAGGACTAATATCATCTACCCTGGGGGGCTGAGGGGGATTAAACCAAACCCAAACCCGAAAAATCATAGCCTACTCATCAATCGCCCATCTAGGTTGAATAGCTACAATCTCTTCAATCATAACCAATATTCTTGTTATAAACCTATTACTTTATATAATTATAACAACATCAATATTTTTTACCCTTATCTTATCAAAATCTAAAACAATTCAAGATACAACTACCTCATGAACACTATCTCCAACCCTAACCATCATTATAATATTATCACTTCTCTCATTAGGCGGTCTACCCCCCCTAAGCGGATTTATACCAAAATGATTAATCCTAGAAGAACTCACAACCCAAAATCTTACACCACTAGCCACTATTATAGCAACATCTGCCCTACTCAGCTTATTTTTTTATCTACGACTAACCTATACTACCACCCTAACAATTTCCCCTAATACCTTACAAACTAAATTTAAATGACGATTCAAACCTAACACCTCAACCCTACCAATAATAATCTTTACCCCATTAACTATTCTCATATTACCATTAACACCAATAATACTTATAT-----AGA?ACTTAGGAT---TAAATA----AACCAAGAGCCTTCAAAGCTCAAAATATGGATGAAAACCCCATAGTTTCTG-----CTAAGACTTGTAAAATACTAATTTACATCTCCTGAATGCAACTCAAATGCTTTTATTAAGCTAAAGCCTTC--CTGAATAGGAGGGCCTCGATCCCACAATAA--ATTAATTAACAGCTAATTACCCAAACCAGCGGGCTTCTATTCG-CTTCTCCCGTACGGGAG-AAGCCCCGGAGCC-TATT-GGGGCTCTTTTTCAAACTTGCATTTTGACGAGA----AACACTTCAGGGCTTT-----GATAAGAAAAGGAATTAAACCTATGTAAATAGGACTACAGCCTACCGCCT-AACACTCGGCCATCTTACCTGTGTCTATCAATCGTTGA

seq_Anolis_luteogularis

totalcount=4

taxon=Anolis_olssoni

value=ATGAACCCCACCATCTCCATAAATTATCTATCAAGCCTAGCAACAGGAACAATTATTACTATGACCAGCTTTCATTGATTAATAGCATGAATTGGATTAGAAGTCAACACACTAGCAATTATTCCAATCATCTCAGCCCCTCACCACCCACGATCAACAGAAGCTGCAACAAAATACTTTCTCACACAAGCAGCTGCCTCCGCTATAATTCTATTTGCCAGTATAATTAACGCCTGACAAACAGGCACATGAGACATTACTCAACTGTCAACCACCCCTGCCCACACCCTCCTAACTATAGCACTAGCCATAAAACTAGGACTTGCCCCACTTCACTTCTGATTACCAGAAGTTATTCAAGGTGCCACCCTTCCCACTGCTTTCATCATTGTAACATGGCAAAAACTTGCTCCTATATCACTTATTTTTTTAACCATAAACAACCTAAACCCAACAATTTTACTTCTCCTTGGACTTCTATCTTCTACAGTAGGAGGATGAGCCGGATTAAACCAAACACAAACCCGAAAAATTATAGCCTATTCATCAATTTCACACTTAGGCTGAATGGCCGCAATCTCCTCTATTATAACTAATATTCTTATTATAAACCTAACCCTTTATTTAATTATAACAACAACCATGTTTTATACCCTAATTTTAACTAAATCCAAAACAATCCAAGACTCAACCCTCACCTGATCACTTTCACCAGTACTAACAATTATTATAATACTAACACTCCTCTCACTAGGAGGACTACCTCCCCTAACCGGATTTTTACCAAAATGAATAATCCTAGAAGAACTTACTACCCAAAACCTAACCCCACTGGCCACCATAATAGCCATTTCAGCTTTACTAAGCCTATTTTTTTACCTACGCCTAACTTATACAACAACCTTAACACTCTCCCCAAACACAATACAAACAAAACTCAAATGGCGATTTAAATTAAATAAACCAACAACACTTATACTAATAACTTCTACAATTACCACCTTCTTACTCCCCCTATCACCACTCATTTTAATAT-----AAAAACTTAGGTT---TAACCA----AACCAAGAGCCTTCAAAGCTCAAAATAAGGGTCAAACACCCTTAGTTTTTG------TAAGACTTGTGAAATACTAATACACATCTTCTGAATGCAACTCAAACACTTTAATTAAGCTAAAGCCTCT--CTGAATAGGCGGGCCTCGATCCCGCGACAA--ATTAATTAACAGCTAACTACCCAAACCAGCGGGCTTCTACTCG-CTTCTCCCGTACGGGAG-AAGCCCCGGAGCCGTTT--GGGGCTCTTCTTCAAACTTGCATTTTGATGTGA----AACACTTCGGGACTTT-----GATAAAGAAAGGAATTAAACCAATGTTAATAGGACTACAGCCTACTGCCT-ATCATTCGGCCACTTTACCTGTGTTCATTAAT??????

seq_Anolis_olssoni

totalcount=4

taxon=Anolis_stratulus

value=ATGAGCCCTATAATTTACACAATCATTTTGTCAAGCCTAGCAACAGGGACAATTATTACCATAACCAGCTACCACTGATTAATAGCTTGAATAGGCCTAGAACTTAATACTCTAGCAATTATTCCATTATCTCATACAACACACAACCCACGATCTACAGAAGCCGCAACAAAATACTTCTTAACACAAGCAGCAGCATCTGCTATAATCTTGTTTTCCAGCATAACCAACGCCTGCTTTACGGGCATATGAGACATTACTCAAATATCTTATTTACCATCTAATATTCTTCTAACCATGGCACTAGCCATAAAACTCGGCCTAGCACCAGTGCACTTCTGATTTCCAGAAGTCTTACAAGGCTCAACCCTACTTACCGCTTTTATTATTTCAACATGACAAAAACTGGCCCCAATATCACTAATTTTTTTGACAATAAGCAATCTTCCACCTATAATTTTATTAACTTTAGGACTTGTTTCCTCTATTATTGGTGGGTGAGGCGGACTTAACCAAACACAAACCCGAAAAATCATAGCATACTCATCAATCGCACACCTAGGATGAATAGCTGTAATTTCCTCAATTATAACAAACATTATAATTATAAACCTTTTAGTTTATTTAATAATAACAACAGCCCTATTTTTAGCCCTAATTTTATCTAAATCAAAAACAATTCAAGATACAACAAACACTTGAACAATATCCCCCACTTTAACTATTATTATGATACTTCTACTCCTCTCACTTGGTGGCCTGCCCCCCTTAACAGGGTTTTTACCGAAATGATTAATTTTAGAAGAACTAATAACCCAAAACCTTATTCCACTAGCAACACTTATAGCACTTACAGCCCTTCTTAGCTTATTCTTTTATCTTCGCCTAGCTTACACAACAACCTTAACACTTTCTCCAAACACACTACAAATAAAGTTTAAATGACGATTTAAACCAGCCACCAAGGCCTACCTAATATTATTTTCAACCCTAGCTATTTTTCTTTTACCACTTACACCACTAATTTTACTA---T-----AAAAACTTAGGAT--AATCTTA----AACCAAGAGCCTTCAAAGTTCAAAATAAGGGTGCGATTCCCTTAGTTTTTG------TAAGACTTGTAAAATACTAATTTACATCTCATGAATGCAACTCAAGCGCTTTTATTAAACTAAAGCCTCC--CTGAACAGGCGGGCCTTGATCCCACGACAA--ATTAATTAACAGCTAACTGCCCTAACCAGCGGGCTTCTATTCG-CTTCTCCCGTACGGGAG-AAGCCCCGGAGCC-TTTA--AGGCTCTTCTTCAAACTTGCATTTTGACGTGA---AAACACTACAGGGCTTTT----AGTAAAGAAAGGGATTAAACCAATGTAAGTAAGTTTACAGCTTACCGCCT-AACACTCAGCCACTTTACCTGTGTTTATTAATCGTTGA

seq_Anolis_stratulus

value=2.0
kappa

distribution
posterior

distribution
priorbirthDiffRate

tree

YuleModel
value=1.0

birthRate

x

distr

KappaPrior

M

S

meanInRealSpace=true

LogNormalDistributionModel

distribution
l ikelihood

data

tree

siteModel

branchRateModel

treeLikelihood

shape

proportionInvariant

substModel

SiteModel

kappa

frequencies

hky

data
empiricalFreqs

clock.rate
StrictClock

value=1.0
clockRate

t ree

scaleFactor=0.5

weight=3.0

treeScaler

t ree

scaleFactor=0.5

rootOnly=true

weight=3.0

treeRootScaler

t ree

weight=30.0

UniformOperator

t ree

weight=15.0

SubtreeSlide

t ree

weight=15.0

narrow

isNarrow=false

tree

weight=3.0

wide

t ree

weight=3.0

WilsonBalding

parameter

scaleFactor=0.5

weight=0.1

KappaScaler

fileName=anolis.$(seed).log

log

logEvery=1000

model

sort

tracelog

log

logEvery=1000

screenlog

fileName=anolis.$(seed).trees

log

logEvery=1000

mode

treelog

Figure 12.7 Adding a posterior, prior and likelihood and appropriate priors on kappa,
the tree and birth rate of the Yule prior. This model forms a proper Bayesian analysis
that can be executed in BEAST 2.

assorted utilities, such as file parsers, formatters, random number generation and
package management in the beast.util package. Together, these packages form
BEAST.

The BEAST 2 Philosophy is ‘everything is a BEAST-object’. A BEAST-object
is an object that provides the following.

• graph structure: BEAST-objects are connected with other BEAST-objects
through ‘inputs’, which represent links between BEAST-objects. This way
BEAST-objects form a directed acyclic graph as shown in Figures 12.1-12.7.

• validation: inputs have validation rules associated with them, such as whether
an input is optional or required, which trigger some automatic sanity checks
for a model. The graph structure makes it possible to validate aspects of the
model systematically. For example, it is easy to check that every operator
should operate on a StateNode that is in the State.

• documentation: through Description and Citation annotations, and de-
scriptions and names on inputs.

• XML parsing: BEAST-objects together with their input define an XML file
format so models can be written in readable format.

The task of a BEAST-object writer is to create classes, specify inputs and
provide extra validation that is not already provided by inputs. Chapter 14 goes
into the details of the coding involved in writing BEAST-objects.

D
RA

FT
14-7

-2
014

12.3 MCMC library 183

1 Read data
2 I n i t i a l i z e s t a t e
3 whi le (not t i r e d) {
4 Propose new s t a t e
5 c a l c u l a t e L o g P o s t e r i o r () ;
6 i f (new s t a t e i s acceptab l e)
7 // do something
8 e l s e
9 // do something e l s e

10 Log s t a t e
11 }

Figure 12.8 Basic structure of MCMC.

12.3 MCMC library

Bayesian computation is most often accomplished using the MCMC algorithm.
Figure 12.8 shows the basic structure of the MCMC algorithm. A glance at
this bit of pseudo-code reveals that the least that is required are the following
components:

• a data/alignment object that contains sequence data,
• a state object to represent the current and proposed state. The state consists

of at least one tree (see scope at the start of this chapter) and parameters,
which can be integer, real or boolean valued.

• probability distribution object to calculate the posterior.
• operator objects to work on the state and propose new states.
• log objects, since we are interested in the results which have to be recorded

somewhere.
• an MCMC object to control the flow of the computation.

So, that leaves us with at least an Alignment, State, Parameter, Tree,
Distribution, Operator, Logger and MCMC object. Since trees consist of nodes,
a Node object is desirable as well. Further, to ensure type safety we distinguish
three types of parameter, RealParameter, IntegerParameter and BooleanParameter.

12.3.1 MCMC/runable

A good understanding of the implementation of the MCMC algorithm in BEAST
is essential in writing efficient BEAST-objects and in this section we will go
through its details. The main loop of the MCMC algorithm executes the following
steps after the state is initialised:

1 Propose new s t a t e
2 logP = c a l c u l a t e L o g P o s t e r i o r () ;
3 i f (new s t a t e i s acceptab l e)

D
RA

FT
14-7

-2
014

184 Getting started with BEAST 2

4 // do something
5 e l s e
6 // do something e l s e

In principle, it explores the space (represented by the state) by randomly
proposing new states in the state space. The quality of the state is determined
by the posterior probability, which can be quite small, hence we calculate the
logarithm of the posterior to prevent numeric underflow. Depending on the ac-
ceptance criterion, the new state is accepted or rejected. Where the MCMC
algorithm differs from simulated annealing, random hill climbing and other opti-
misation algorithms is in the acceptance criterion and underlying theory, which
allows us to interpret the points visited in state space as a sample from the pos-
terior distribution. Since MCMC algorithms may require a long time to converge
it is important to implement the evaluation of the proposed new state as well as
accepting and rejecting a new state as efficiently as possible. First, we will have
a look at how this affects the state, as shown in the following listing.

1 Store s t a t e
2 Propose new s t a t e
3 logP = c a l c u l a t e L o g P o s t e r i o r () ;
4 i f (new s t a t e i s acceptab l e)
5 accept s t a t e
6 e l s e
7 r e s t o r e s t a t e

At the start of the loop in line 1 the state is stored, which makes it easy to
restore the state later, if required. When a new state is proposed (line 2), one or
more of the StateNodes in the state will be given a new value, for example, a
parameter may have its values scaled or a tree may have its topology changed.
The State keeps track of which of the StateNodes are changed. All StateNodes
that changed have a flag marking that they are ‘dirty’, while all other StateNodes
are marked as ‘clean’. If the state turns out to be acceptable, the state is notified
(line 5) and all StateNodes that were marked dirty before, are now marked clean
again. If the state is not acceptable, the state should be restored to the old state
that was stored in line 1.

The State is aware of the network of BEAST-objects and can calculate which
of the CalculationNodes may be impacted by a change of a StateNode. Figure
12.9 shows a State consisting of a kappa parameter and a tree. When the kappa
parameter changes, this has an effect on the HKY substitution model, which
causes a change in the site model, which requires the TreeLikleihood to be
updated. However, if the tree changes, but the kappa parameter remains the
same, there is no need to update the HKY model or the site model. In fact, the
TreeLikelihood is set up to detect which part of the tree requires updating so
that the peeling algorithm does not need to be applied for the complete tree

D
RA

FT
14-7

-2
014

12.3 MCMC library 185

State
nodes

Calculation nodes

Figure 12.9 The difference between StateNode and CalcultionNode. StateNodes are
part of the State and can only be changed by operators. CalculatioNodes change
when one of it’s input is a StateNode that changed or a CalculatioNode that
changed.

every time a part of a tree changes. The following listing shows where the
CalculationNodes get updated during the execution of the main loop.

1 Store s t a t e
2 Propose new s t a t e
3 s t o r e c a l c u l a t i o n nodes
4 check d i r t y n e s s o f c a l c u l a t i o n nodes (

r e q u i r e s R e c a l c u l a t i o n ())
5 logP = c a l c u l a t e L o g P o s t e r i o r () ;
6 i f (new s t a t e i s acceptab l e)
7 accept s t a t e
8 mark c a l c u l a t i o n nodes c l ean (s t o r e ())
9 e l s e

10 r e s t o r e s t a t e
11 r e s t o r e c a l c u l a t i o n nodes (r e s t o r e ())

After a new state is proposed, every CalculationNode that may be affected
by a changed StateNode gets asked to store its internal states in line 3 by
calling the store method. So, in the model of Figure 12.9 if the kappa parameter
changed, the HKY, SiteModel and TreeLikelihood calculation nodes will have
their store method called. But if only the tree changed but not the kappa
parameter, only the TreeLikelihood will have its store method called, while the
HKY and SiteModel nodes are not disturbed.

Next, in line 4, the same set of CalculationNodes will be asked to check
whether they are still up to date by calling requiresRecalculation on these

D
RA

FT
14-7

-2
014

186 Getting started with BEAST 2

BEAST-objects. The order in which calculation nodes are called is such that if an
input of a CalculationNode is a potentially affected CalculationNode then the
input will have its requiresRecalculation method called first. Typically, the
method is used to check all inputs that are StateNodes and CalculationNodes
and if one of them is flagged as dirty, a flag is set inside the CalculationNode
to mark which parts of the calculation needs to be redone to become up to date.
Note that this is not yet a good point to actually perform the calculation since
it is possible that the calculation is not required. For example, when a state is
proposed that violates one of the priors, like a monophyletic constraint on a tree,
then it is not necessary to perform the expensive tree likelihood calculation since
at the point of checking the prior it is already known that the state is not going
to be acceptable.

When a proposed state is acceptable, the set of CalculationNodes get their
accept method called (line 8). This method is used to mark the CalculationNode
is clean again, and typically no other action is necessary. If the state is not ac-
ceptable, the CalculationNodes might need to restore their internal state that
was stored when the store method was called from line 3. This happens in line
11, and the CalculationNode should be marked as being clean again. Clear-
ing the dirty flag is done by default in the store and restore implementations
in the CalculationNode class, so it is important to call super.store() and
super.restore() from implementations of store and restore respectively.

12.3.2 State, stateNodes and initialisation

The state is explicit in XML and as a BEAST-object (unlike BEAST 1). The
State contains StateNodes, and parameters and trees are StateNode implemen-
tations. A Parameter is a StateNode for representing a singleton, an array or
a matrix of values. A Tree is a StateNode consisting of Nodes. The State can
store and restore itself for MCMC proposals, which means that StateNodes must
be able to store and restore their current values. The easiest way to achieve this
is by keeping a copy of the values of a StateNode, so Parameters for example
contain two arrays, one with the current values and one with stored values. Stor-
ing parameter values is implemented as copying the current values in the stored
values array, and restoring is implemented as switching stored and current values
arrays.
Operator BEAST-objects work on the StateNodes and when a StateNode

changes, it must report to the State that it became dirty. The State can then
calculate which CalculationNodes might be affected by the StateNode change.
When a StateNode changes, it is marked as being dirty, so that CalculationNodes
can interrogate a StateNode and determine whether the CalculationNode needs
to recalculate itself.

The State can be stored to disk and later restored from disk, for example for
resuming a chain that has not quite converged yet. To save and load a State,
the state uses the toXML and fromXML methods of StateNodes.

D
RA

FT
14-7

-2
014

12.3 MCMC library 187

At the start of a chain, the State and thus its StateNodes need to be ini-
tialised. Parameters and trees have default implementations for initialisation,
but sometimes there are dependencies between StateNodes, for example in a
*BEAST analysis, the species tree must contain all gene trees. In such a situation,
a complex initialisation is required, which is best done in a StateNodeInitialiser.
This is a BEAST-object that has as input one of more StateNodes and can ini-
tialise one StateNode based on the values of another. For instance, RandomGeneTree
takes as input two trees, one representing the species tree and one representing
the gene tree. It initialises the gene tree such that the root of the species tree is
lower than the first coalescent event in the gene tree, so all internal nodes of the
gene tree are in effect sticking out above the root of the species tree, ensuing the
gene tree is consistent with the species tree. State node initialiser are called at
the start of the MCMC chain, hence they are input to the MCMC BEAST-object.

A restriction on StateNodes is that none of its inputs can be StateNodes,
since that would confuse the State in determining which nodes to update.

12.3.3 CalculationNode and distribution

CalculationNodes are BEAST-objects that actually calculate some things of
interest, such as a transition probability matrix, and ultimately result in the cal-
culation of a posterior probability of the state. Writing a CalculationNode can
be as simple as implementing the store, restore and requiresRecalculation
methods. A Distribution is a CalculationNode that can return a log proba-
bility. Distributions are loggable.
CalculationNodes can have StateNodes and other CalculationNodes as in-

put, but there are a few restrictions:

• they are not allowed to form cycles. So, if CalculationNode A is an input
of CalculationNode B, then A cannot have B as its input, nor any of the
outputs downstream from B.

• all BEAST-objects between a StateNode that is part of the State and the pos-
terior (which is an input of MCMC) must be CalculationNodes. The State
notifies all CalculationNodes of changes in StateNodes and BEAST-objects
that are not CalculationNodes cannot be notified properly.

12.3.4 Operators

Operators determine how the state space is explored. An Operator has at least
one StateNode as input and implements the proposal method. Most operators
can be found in the beast.evolution.operator package. The following is a list
of commonly used operators, a short description and an indication when it is
appropriate to use them.

D
RA

FT
14-7

-2
014

188 Getting started with BEAST 2

• A ScaleOperator picks a random number s to scale a StateNode. If the
StateNode is a Parameter, values of the parameter are multiplied with s,
and if it is a Tree all internal node heights are multiplied by s. This is the
work-horse of the operators for sampling values of real valued parameters,
and also useful for scaling complete trees.

• An UpDownOperator scales one or more StateNodes, but some of them are
scaled up (multiplied by s) while others are scaled down (multiplied by
1/s). This is especially useful for StateNodes that are dependent, for ex-
ample, tree height and population size. Without UpDownOperator it is often
hard to make such dependent parameters mix. The easiest way to find out
whether StateNodes are dependent is to plot the pairs of samples (for ex-
ample with the Tracer program). If the plot shows a cloud of points there
is little dependency, but if all points are on a line there is high dependency
and the UpDownOperator could help to fix this.

• A RealRandomWalkOperator (IntRandomWalkOperator) selects a random di-
mension of the real (integer) parameter and perturbs the value a random
amount. This is useful for integer values parameters.

• A UniformOperator is an operator that selects a random dimension of a real
or integer parameter and replaces its value by a random value in the range
of the parameter. This is useful for sampling integer parameters, but with
bolder proposals than the IntRandomWalkOperator. A combination of a
UniformOperator together with a random walk operator usually allows for
efficient exploration of the sample space.

• A BitFlipOperator selects a random dimension of a boolean parameter and
changes its value to false if true or vice versa. This is useful for boolean
values parameters.

• A DeltaExchange operator picks two values in a multi dimensional parameter
and increases one value by a randomly selected value δ, while decreasing
the other value by the same amount δ. This is useful in sampling parameter
values that are constrained to a certain sum. For example, when sampling
a frequencies parameter that represent a substitution’s model equilibrium
state frequencies, the parameter is restricted to sum to unity.

• A SwapOperator swaps one or more pairs of values in a parameter. This is
similar to DeltaExchange, but especially useful for sampling categories
associated with meta-data attached to tree branches. An example is rate
categories for the uncorrelated relaxed clock model.

• The Uniform, SubtreeSlide, Exchange and WilsonBalding operators create
proposals for trees, where the first one never changes the topology of a tree,
but the others can. The Exchange operator comes in a ‘narrow’ and ‘wide’
variant for more conservative and more bold moves respectively. Using a
mix of these operators tends to explore the tree-space efficiently and makes
a chain converges to high posterior trees quickly.

• The NodeReheight operator is a tree operator that randomly changes the
height of a node in a tree, then reconstructs the tree from node heights.

D
RA

FT
14-7

-2
014

12.4 The evolution library 189

It has the same function as the set of operators mentioned in the previous
paragraph with only a different approach to exploring tree space.

• TipDatesRandomWalker and TipDatesScaler are operators that work on the
tip nodes in a tree, that is, the nodes representing the taxa in a tree. As
their name suggest, these are useful for estimating tip dates.

Often it is possible to detect that a proposal will surely be rejected, for in-
stance, when the proposal results in a tree with negative branch lengths. To
speed up rejection of such a proposal, the proposal method can return negative
infinity and the MCMC loop will skip any calculation and rejects immediately.
Gibbs operator: To implement a Gibbs operator, the proposal method can
return positive infinity, which ensures the proposal will always be accepted.

12.3.5 Logger and loggable

Implementing loggers is a matter of implementing the Loggable interface, which
has three methods: init for initialising the logger, for instance, print the name of
the loggable in the header, log which actually logs one or more values, and close
for closing off a log. A much used implementation of Loggable is Distribution,
which logs the log probability of the distribution, Parameter for logging param-
eter values, and Tree for logging trees in Newick format. Other useful loggers
are;

• ESS for reporting the effective sample size of a Function such as a parameter.
This is especially useful for tracking the state of a chain when logging to
screen.

• MRCATime for reporting the height of an internal node in a tree representing
the most recent common ancestor of a set of taxa.

• TreeHeightLogger for reporting the height of the root of a tree.
• TreeWithMetaDataLogger for logging a Newick tree where the branches are

annotated with meta-data, such as branch rates.

12.4 The evolution library

The evolution library can be found in the beast.evolution package, and con-
tains BEAST-objects for handling alignments, phylogenetic trees and various
BEAST-objects for calculating the likelihood of an alignment for a tree and var-
ious priors. You can find the details of the individual classes by reading the
Java-doc documentation, or by directly looking at the Java classes. In this sec-
tion, we concentrate on how the various packages and some of the classes inside
these packages are related to each other and give a high level overview of the
library.

D
RA

FT
14-7

-2
014

190 Getting started with BEAST 2

12.4.1 Alignment, data-type, distance

The data that we want to analyse in evolutionary problems often consists of
aligned sequences. The beast.evolution.alignment package contains classes
for handling sequences and alignments. To create a partition of an alignment,
an alignment can be filtered using the FilteredAlignment class as illustrated
in Figure 12.10.

data
Partition1

Alignment

data
Partition2

Figure 12.10 Splitting an alignment into two alignments using two filtered alignments,
one partition for every third site in the alignment, and one for the first and second
sites, skipping every third site. For each of these partitions a likelihood can be defined.

The data in a sequence is of a certain data-type, such as nucleotide or amino-
acid. The beast.evolution.datatype package represents various data types.
To define a new data type it is possible to use the UserDataType class, which
only requires changes in the XML. Alternatively, a new data type can be created
by implementing the DataType interface, or derive from DataType.Base.

It can be useful to calculate the distance between two sequences. The beast.evolution.alignment.distance
package provides some distances, including Jukes Cantor distance and Ham-
ming distance. These distances can be used to construct for example UPGMA
or neighbour joining trees as starting trees for an MCMC analysis (through the
beast.util.ClusterTree class).

12.4.2 Treelikelihood

clusterType=upgma

taxa

t ree

al ignment

distribution
posterior

populationModel

treeIntervals

coalescent

ConstantPopulation

t ree
TreeIntervals

data

tree

siteModel

branchRateModel

treeLikelihood

substModel
siteModel

kappa
hky

value=1.0
kappa

clock.rate
StrictClockModel

clockRate

Figure 12.11 Example illustrating most of the components of the evolution library.

D
RA

FT
14-7

-2
014

12.4 The evolution library 191

Figure 12.11 shows a model for a HKY substitution model, and strict clock
and coalescent prior with constant population size that illustrates most of the
components of the evolution library. Let’s have a look at this model, going from
the posterior at the right down to its inputs. The posterior is a compound dis-
tribution from the MCMC library. Its inputs are a coalescent prior and a tree-
likelihood representing the prior and likelihood for this model. The coalescent is
a tree prior with a demographic component and the simple coalescent with con-
stant population size can be found in the beast.evolution.tree.coalescent
package together with a number of more complex tree priors, such as (extended)
Bayesian skyline plot.

The beast.evolution.likelihood package contains the tree-likelihood classes.
Be default, BEAST tries to use the Beagle implementation of the peeling algo-
rithm, but otherwise uses a Java implementation. Since the tree-likelihood cal-
culates the likelihood of an alignment for a given tree, it should come as no
surprise that the tree-likelihood has an alignment and a tree as its input. The
beast.evolution.alignment package contains classes for alignments, sequences
and taxon sets. The beast.evolution.tree package contains the Tree state
node and classes for initialising trees randomly (RandomTree), logging tree infor-
mation (TreeHeightLogger, TreeWithMetaDataLogger) and TreeDistribution,
which is the base class for priors over trees, including the coalescent based priors.

There is another group of tree priors that are not based on coalescent theory
but on theories about speciation, such as the Yule and birth-death priors. Since
only a single prior on the tree should be specified, none of these priors is shown
in Figure 12.11. These priors can be found in the beast.evolution.speciation
package together with priors for *BEAST analysis and utility classes for initial-
isation species trees and logging for *BEAST.

The tree-likelihood requires a site model as input, which takes a substitution
model as input, a HKY model in Figure 12.11. In the evolution library, there
are packages for site models and substitution models. The site model package
(beast.evolution.sitemodel) only contains an implementation of the gamma
site model, which allows a proportion of the sites to be invariant. The substitu-
tion model package (beast.evolution.substitutionmodel) contains the most
popular models, including Jukes cantor, HKY and general time reversible sub-
stitution models for nucleotide data as well as JTT, WAG, MTREV, CPREV,
Blossum, and Dayhoff substitution models for amino-acid data. Root frequencies
are in the substitution model package.

The tree-likelihood has a branch-rate model input, which can be used to define
clock models on the tree. In Figure 12.11, a strict clock model is shown. The
package beast.evolution.branchratemodel contains other clock models, such
as the uncorrelated relaxed clock model and the random local clock model.

There is a package for operators in the evolution library, which contains most of
the Operator implementations. It is part of the evolution library since it contains
operators on trees, and it is handy to have all general purpose operators together
in a single package. More details on operators can be found in Section 12.3.4

D
RA

FT
14-7

-2
014

192 Getting started with BEAST 2

12.5 Other bits and pieces

There are a few more notable packages that can be useful that are outside the
core and evolution packages, namely the following.

The beast.math package contains classes mainly for mathematical items.
The beast.math.distributions package contains distributions for constructing
prior distributions over parameters and MRCA times. The beast.math.statistics
package contains a class for calculating statistics and for entering mathematical
calculations.

The beast.util package contains utilities such as random number genera-
tion, file parsing and managing packages. It contains Randomize for random
number generation. Note that it is recommended to use the Randomizer class
for generating random numbers instead of the java.util.Random class because
it makes debugging a lot easier (See Section 14.5.2) helps ensuring an analy-
sis started with the same seed leads to reproducible results. The beast.util
package contains classes for reading and writing a number of file formats, such
as XMLParser and XMLProducer for reading and writing BEAST XML files,
and NexusParser for reading a subset of NEXUS files. TreeParser does parses
Newick trees. LogAnalyser handles trace log files, and calculates some statistics
on them. Further, the beast.util package contains classes for installing, loading
and un-installing BEAST 2 packages.

The beast.app package contains applications build on the MCMC and evo-
lution libraries, such as BEAST and BEUAti, and its classes are typically not
reused with the exception of input-editors for BEAUti. See Section 15.2.2 for
more details.

12.6 Exercise

Open ModelBuilder (java -cp beast.jar beast.app.ModelBuilder). In ModelBuilder,
open some XML files from the examples directory and inspect the structure of
the graph. It is probably useful to make some BEAST-objects invisible by using
the entries in the view menu.

D
RA

FT
14-7

-2
014

13 BEAST XML

BEAST uses XML as a file format for specifying an analysis. Typically, the XML
file is generated through BEAUti, but for new kinds of analysis or analyses not
directly supported by BEAUti, it is necessary to construct the XML by hand in
a text editor. BEAST-object developers also need to know how to write BEAST
XML files in order to test and use their BEAST-objects. BEAUti uses XML as
well as a file format for specifying templates, which govern its behaviour.

This chapter starts with a short description of XML, then explains how BEAST
interprets XML files and how an XML file can be modified. Finally, we work
through an example of a typical BEAST specification.

13.1 What is XML

XML stands for eXtensible Markup Language and has some similarities with
HTML. However, XML was designed for encoding data, while HTML was de-
signed for displaying information. The easiest way to explain what XML is with-
out going into unnecessary detail is to have a look at the example shown in
Figure 13.1.

Here, we have an (incomplete) BEAST specification that starts with the so
called XML declaration, which specifies the character set used (UTF-8 here) and
is left unchanged most of the time, unless it is necessary to encode informa-
tion in another character set. The second line shows a tag called ‘beast’. Tags
come in pairs, an opening tag and a closing tag. Opening tags are of the form
<tag-name> and can have extra information specified in attributes. Attributes
are pairs of names and values such as version=‘2.0’ for the beast-tag in the
example. Names and values are separated by an equal sign and values are sur-
rounded by single or double quotes. Both are valid, but they should match, so
a value started with a double quote needs to end with a double quote. Closing
tags are of the form < /tag-name> and have no attributes. Everything between
an opening tag and closing tag is called an element.

Elements can have other elements nested in them. In the example above the
‘input’ element is nested inside the ‘beast’ element. Likewise, the ‘kappa’ element
is nested inside the ‘input’ element. When an element does not have any other
elements nested inside the opening and closing tag can be combined in an abbre-

D
RA

FT
14-7

-2
014

194 BEAST XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<beast version='2.0'>

 <!-- The HKY substitution model (Hasegawa, Kishino & Yano, 1985) -->
 <input spec='HKY' id='hky'>
 <kappa idref='hky.kappa'/>
 <frequencies id='freqs' spec='Frequencies'>
 <data idref="alignment"/>
 </frequencies>
 </input>
<![CDATA[
 This is a section of xml that is interpretted without parsing <, >, ', ", &.
]]>
</beast>

XML declaration

comment

Element

Start tag
 End tag

Must match!

Collapsed end tag

Quotes for attribute
values. Must match!

Start
and end
of CDATA
section

Figure 13.1 Small XML example with all of its items annotated.

viated tag of the form <tag-name/ >. In the example, the ‘data’ element only
has an ‘idref’ attribute and has no element enclosed, so it can be abbreviated from
<data idref="alignment">< /data> to <data idref="alignment"/>.

XML comments start with <!−− and end with −− > and text in between is
ignored. Any text but double dash (−−) is allowed inside comments.

There are a few special characters that should be used with care. Since tags
are identified by < and > characters, these cannot be used for attributes names
or values or tag names. The other special characters are single and double quote
and ampersand. XML entities are interpreted as follows: < as <, > as >,
&dquot; as ", " as ' and & as &.

CDATA sections are XML constructs that are interpreted as literal string, so
the content is not parsed. Without the CDATA section, every <, >, ’, " and &
character would require an XML entity, which would not make such fragment
very readable.

Since elements are nested within other elements the nesting defines a hierarchy.
So, we can speak of a parent and child relationship between an element and those
nested within it. The first element is not nested inside any other element and is
called the top-level element. Only one top-level element is allowed.

13.2 BEAST file format and the parser processing model

Since everything in BEAST is a BEAST-object, connected to other BEAST-
objects by inputs, a natural way to interpret an XML file is to create a BEAST-
object for every XML element (with a few exceptions, such as construction el-

D
RA

FT
14-7

-2
014

13.2 BEAST file format and the parser processing model 195

ements like maps and plates and references to other object through the idref
mechanism). Every attribute and nested element are then inputs to this par-
ent BEAST-object. BEAST considers an XML file as a specification for do-
ing an analysis, so it will first determine the kind of analysis by looking for
a BEAST-object that is runnable (that is, a BEAST-object like MCMC that
extends beast.core.Runnable) among the children of the beast element.

13.2.1 Reserved XML attributes

There are four attribute names that are reserved and have special meaning: id,
idref, name and spec. The tag ‘input’ can be used for every BEAST-object.
The ‘name’ attribute specifies the name of the input that connects the BEAST-
object to its parent. So, the name attribute is actually a property of the parent
BEAST-object that the XML specifies. The ‘spec’ attribute specifies the Java-
class of the BEAST-object. The ‘id’ attribute specifies a unique identifier for
a BEAST-object. BEAST-objects can be connected to several inputs using the
id/idref mechanism; the ‘id’ of a BEAST-object can be referred to from another
element by specifying an idref attribute with the value of an id. Each BEAST-
object has a unique id, but the name, spec and idref attribute need not be unique
in an XML file.

Some inputs are not BEAST-objects but primitives (namely Integer, Double,
Boolean, or String) and these inputs can be specified through an attribute. The
following XML fragment illustrates these concepts.

1 <input name="operator" id="kappaScaler"
2 spec="beast.evolution.operators.ScaleOperator"
3 scaleFactor="0.5" weight="1">
4 <input name="parameter" idref="hky.kappa"/>
5 </input>

There are two ‘input’ elements, the first one specifying a BEAST-object of
class beast.evolution.operators.ScaleOperator. The attributes scaleFactor
and weight set primitive inputs to value 0.5 and 1 respectively. The scale operator
has an input with name parameter, and the nested element refers through the
idref attribute to a BEAST-object that should be defined elsewhere in the XML.

13.2.2 Name spaces

The above listing looks quite verbose, and there are a few mechanisms in BEAST
to make the XML shorter and more readable. The Java class names of BEAST-
object can become quite long, and to increase readability, the parser recognises
name spaces; a list of name spaces is specified by the ’namespace’ attribute on the
top level beast element. The list is a colon separated list of packages, for example,
to specify a name space containing beast.core and beast.evolution.operators use

D
RA

FT
14-7

-2
014

196 BEAST XML

1 <beast namespace="beast.core:beast.evolution.operators">

The parser finds a BEAST-object class by going through the list and appending
the value of the spec attribute to the package name. By default, the top level
package is part of the list (at the end), even when not specified explicitly in the
namespace attribute. With the above name space definition, the fragment shown
earlier is equivalent to

1 <input name="operator" id="kappaScaler"
2 spec="ScaleOperator" scaleFactor="0.5" weight="1">
3 <input name="parameter" idref="hky.kappa"/>
4 </input>

Note that if there are BEAST-objects with the same name in different pack-
ages, the BEAST-object that matches with the first package in the class path is
used. To prevent such name clashes, the complete class name can be used.

13.2.3 Input names

Using ‘input’ elements as described above, the name of the input is explicitly
defined in a name attribute and the tag name ‘input’ is constant and rather
uninformative. As an alternative, BEAST recognizes elements in which the input
name is used as the tag name of a child element. That is, <input name="xyz"/>
can also be encoded as <xyz/ >. This allows us to write the fragment above as

1 <operator id="kappaScaler" spec="ScaleOperator"
2 scaleFactor="0.5" weight="1">
3 <parameter idref="hky.kappa"/>
4 </operator >

Note that when the name attribute is specified, the tag name will be ignored.
Further, the end tag should have the same name as the start tag, so both have
tag name ‘operator’.

13.2.4 Id/idref mechanism

The id/idref mechanism is used extensively throughout BEAST XML and can
take up quite a lot of text. When an idref attribute is specified, all other attributes
(except the name attribute) will be ignored, so<parameter spec=’HKY’ idref=’hky.kappa’/>
is interpreted the same as <parameter idref=’hky.kappa’/> and the spec at-
tribute is ignored. This pattern is very common, and to shorten the XML, the
parser recognises an attribute that has a value starting with @ as an element
with a single idref attribute. That is, attribute parameter="@hky.kappa" will
be recognized as a nested element <parameter idref="hky.kappa"/>. With
this in mind, we see that the following fragment is equivalent to that at the start
of this section.

D
RA

FT
14-7

-2
014

13.2 BEAST file format and the parser processing model 197

1 <operator id="kappaScaler" spec="ScaleOperator"
2 scaleFactor="0.5" weight="1" parameter="@hky.kappa"/>

13.2.5 Plates for repetitive parts

Especially for multi-gene analysis, XML files can contain parts that are the same
but differ only in the name of a gene. To compress such parts of an XML file,
the XML parser pre-processes an XML file by looking for plate-elements. You
can look at a plate as a kind macro for a loop over a part of the XML. A plate
has two attributes, var which defines the name of the variable and range which
is a comma separated list of values assigned to the variable name. The plate is
replaced by the XML inside the plate copied once for each of the values and
wherever the variable name occurs this is replaced by the value. Variable names
are encoded as $(var). For example, the following fragment

1 <plate var="n" range="red ,green ,blue">
2 <parameter id="color .$(n)" value="1.0"/>
3 </plate>

is interpreted as

1 <parameter id="color.red" value="1.0"/>
2 <parameter id="color.green" value="1.0"/>
3 <parameter id="color.blue" value="1.0"/>

Note that plates can be nested when different variable names are used.

13.2.6 Element names

Some BEAST-objects are so common that the spec attribute can be omitted and
the parser still knows which BEAST-object to use. Table 13.1 lists the element
names and associated BEAST-objects. Note that if the spec attribute is used
then the tag name is ignored for determining the class of a BEAST-object. The
parser can be told to extend the mapping of element names to BEAST-object
classes using a map-element. The map element has a name attribute that defines
the tag name and the text content describes the class. For example, to map tag
name prior to beast.math.distributions.Prior, use

1 <map name=’prior’>beast.math.distributions.Prior</map>

And for elements with name prior a beast.math.distributions.Prior BEAST-
object will be created. Note that name-spaces are used, so if beast.math.distributions
is a name space, only Prior needs to be used inside the map element. These map
element must be child of the top-level beast element.

D
RA

FT
14-7

-2
014

198 BEAST XML

Table 13.1 Reserved element names

Tag name Associated BEAST-object

run must be beast.core.Runnable
distribution must be beast.core.Distribution
operator must be beast.core.Operator
logger is beast.core.Logger
data is beast.evolution.alignment.Alignment
sequence is beast.evolution.alignment.Sequence
state is beast.core.State
parameter is beast.core.parameter.RealParameter
tree is beast.evolution.tree.Tree
input reserved name
map see text Section 13.2.6
plate macro, see text Section 13.2.5
mergepoint reserved for BEAUti templates
mergewith reserved for BEAUti templates

13.2.7 XML parsing summary

A BEAST XML file will always contain an analysis that starts at the first child
of the top-level element that is a runnable BEAST-object. The analysis is con-
structed by creating BEAST-objects and setting input values of BEAST-objects,
possibly connecting them with other BEAST-objects.

The class of a BEAST-object for an element is determined as follows

• if an idref attribute is specified, then the class of the BEAST-object for the ele-
ment with the id of the same name is used, e.g.,<input idref="hky.kappa"/>.

• a spec attribute is specified, then the first name-space containing the spec-
value is used e.g., <operator spec="ScaleOperator"/>.

• the element name is a defined in a map element, then the class defined in the
map element is used e.g.,<scaleoperator/> when<map name="scaleoperator">
beast.evolution.operators.ScaleOperator </map> is defined.

• the element name is a reserved name, then the BEAST-object listed in Table
13.1 is used e.g., <parameter value="3.14"/>.

The input name associated with a BEAST-object is determined as follows

• the name-attribute is specified in a child element, the name’s value is used,
for example, <input name="operator" >.

• the child element name differs from input, then the element name is used, for
example, <operator >.

• the tag is ‘input’ and contains text, then the input name ‘value’ is used, for
example, <input>3</input>.

Finally, the input value of a BEAST-object is determined as follows

D
RA

FT
14-7

-2
014

13.3 An Annotated Example 199

Figure 13.2 Model view of the annotated XML example.

state

distribution

operator

logger

mcmc

stateNode

storeEvery=1000

state

taxonset
Tree

alignment
TaxonSet

sequence
dna

value=2.0
kappa

distribution
posterior

distribution
prior

birthDiffRate

tree

YuleModel

value=1.0
birthRate

x

distr

KappaPrior

distribution
l ikelihood

data

tree

siteModel

branchRateModel

treeLikelihood

shape

proportionInvariant

substModel

SiteModel

kappa

frequencies

hky

data

estimate=false

equalFreqs

clock.rate
StrictClock

value=1.0
clockRate

OneOnX

• an idref is specified, then the referred object is used as value, e.g., <parameter
idref="hky.kappa"> or parameter="@hky.kappa".

• an attribute value is specified, then the primitive value is used, e.g., weight="3.0".
• there is text content inside the element, then the text value is used, e.g.,

<input>3.0</input>.

13.3 An Annotated Example

The following analysis estimates the tree using a HKY substitution model for
which the kappa is estimated and a strict clock model. A Yule prior is placed on
the tree and a 1/X prior on kappa. Comments are added to highlight peculiarities
of the BEAST XML parser. Figure 13.2 shows the model view of the file, but
with sequences and loggers removed for clarity.

1 <?xml version="1.0" encoding="UTF -8" standalone="no"?>
2 <beast version="2.0" namespace="beast.core:beast.

evolution.alignment:beast.evolution.tree:beast.
evolution.tree.coalescent:beast.core.util:beast.
evolution.nuc:beast.evolution.operators:beast.
evolution.sitemodel:beast.evolution.
substitutionmodel:beast.evolution.likelihood:beast.
math.distributions:beast.evolution.speciation:beast.
evolution.branchratemodel">

The first line is the XML declaration which tells the parser about the char-
acter encoding. The second line indicates that this is a BEAST version 2 file.
Furthermore, a list of packages is defined that constitute the name space.

3 <data dataType =" nucleotide " id="dna">

D
RA

FT
14-7

-2
014

200 BEAST XML

4 <sequence taxon="human">
AGAAATATGTCTGATAAAAGAGTTACTTTGATAGAGTAAATAATAGGAGC ...
</ sequence >

5 <sequence taxon="chimp">
AGAAATATGTCTGATAAAAGAATTACTTTGATAGAGTAAATAATAGGAGT ...
</ sequence >

6 <sequence taxon=" bonobo ">
AGAAATATGTCTGATAAAAGAATTACTTTGATAGAGTAAATAATAGGAGT ...
</ sequence >

7 <sequence taxon=" gorilla ">
AGAAATATGTCTGATAAAAGAGTTACTTTGATAGAGTAAATAATAGAGGT ...
</ sequence >

8 <sequence taxon=" orangutan ">
AGAAATATGTCTGACAAAAGAGTTACTTTGATAGAGTAAAAAATAGAGGT ...
</ sequence >

9 <sequence taxon=" siamang ">
AGAAATACGTCTGACGAAAGAGTTACTTTGATAGAGTAAATAACAGGGGT ...
</ sequence >

10 </data >

Note that data (line 3) and sequence (lines 4 to 9) are reserved names that are
associated with beast.evolution.alignment.Alignment and beast.evolution.alignment.Sequence
BEAST-objects respectively. Most BEAST XML files have a data block element
at the start. The sequence BEAST-object has an input called ‘value’ and the
text inside the sequence tags representing character sequences are assigned to
this ‘value’ input. The dots in the XML fragment indicate that there are a lot
more sites in the sequence not shown here to save space. The data element has an
id attribute, so that it can later be referred from for example the tree-likelihood.

11 <distribution id=" posterior " spec="util. CompoundDistribution "
>

12 <distribution id="prior" spec="util. CompoundDistribution "
>

13 <distribution conditionalOnRoot ="false" id=" YuleModel
" spec=" YuleModel " tree="@Tree">

14 <parameter estimate ="false" id=" birthRat
15 e" name=" birthDiffRate " value="1.0"/>
16 </ distribution >
17

18 <distribution id=" KappaPrior " spec="Prior" x=" @kappa "
>

19 <distr id=" OneOnX .0" spec=" OneOnX "/>
20 </ distribution >
21 </ distribution >
22

23 <distribution data="@dna" id=" likelihood " spec="
TreeLikelihood " tree="@Tree">

24 <siteModel id=" SiteModel " spec=" SiteModel ">
25 <substModel id="hky" kappa=" @kappa " spec="HKY">
26 <frequencies data="@dna" estimate ="false" id=

" equalFreqs " spec=" Frequencies "/>
27 </ substModel >
28 </ siteModel >
29

D
RA

FT
14-7

-2
014

13.3 An Annotated Example 201

30 <branchRateModel id=" StrictClock " spec="
StrictClockModel ">

31 <parameter estimate ="false" id=" clockRate " name="
clock.rate" value="1.0"/>

32 </ branchRateModel >
33 </ distribution >
34 </ distribution >

Lines 11 to 34 define the posterior from which we sample. Note that the spec
attribute in line 11 contains part of the package (util.CompoundDistribution)
that contains the CompoundDistribution class. The posterior contains two dis-
tributions, a compound distribution for the prior (line 12), and a tree-likelihood
for the likelihood (line 23). The prior consists of a Yule prior (line 13) and a
prior on kappa (line 18). Note that the kappa-parameter referred to in line 18
is defined in the state (line 37), showing that idrefs can refer to BEAST-objects
specified later in the file.

The tree likelihood has a sitemodel as input (line 24), which here has a HKY
substitution model (line 25) as input. The likelihood also has a clock model (line
30) which here is a strict clock. All elements have id attributes so that they can
be referred to, for example for logging.

Lines 35 to 78 specify the MCMC BEAST-object. This is the main entry point
for the analysis. The child elements of the MCMC element are the state, the
distribution to sample from, a list of operators, a list of loggers and an initialiser
for the tree. The state (line 37 to 44) lists the state nodes that are operated on,
here just the tree and kappa parameter. Note that the tree element (line 38) has
a name attribute linking it to the state through its stateNode input. If the tag
name would be set to stateNode, the name attribute is superfluous, but a spec
attribute is required to specify the class, which is implicit when ‘tree is used as
tag.

35 <run chainLength="10000000" id="mcmc" preBurnin="0" spec="MCMC
">

36

37 <s t a t e id="state" s toreEvery="100000">
38 <t r e e es t imate="true" id="Tree" name="stateNode">
39 <taxonset id="TaxonSet" spec="TaxonSet">
40 <data i d r e f="dna" name="alignment"/>
41 </ taxonset>
42 </ t r e e>
43 <parameter e s t imate="true" id="kappa" lower="0.0" name

="stateNode" value="1.0"/>
44 </ s t a t e>
45

46 <d i s t r i b u t i o n i d r e f="posterior"/>

The distribution (line 46) the MCMC analysis samples from refers to the
posterior defined earlier in the file at line 11. Lines 47 to 53 list the operators
used in the MCMC chain. Operators need to refer to at least one state node
defined in the state element (line 37 to 44).

D
RA

FT
14-7

-2
014

202 BEAST XML

47 <operator degreesOfFreedom="1" id="treeScaler" s c a l eF ac t o r="
0.5" spec="ScaleOperator" t r e e="@Tree" weight="1.0"/>

48 <operator id="UniformOperator" spec="Uniform" t r e e="@Tree"
weight="10.0"/>

49 <operator gauss ian="true" id="SubtreeSlide" opt imi se="true"
s i z e="1.0" spec="SubtreeSlide" t r e e="@Tree" weight="5.0"/>

50 <operator id="narrow" isNarrow="true" spec="Exchange" t r e e="
@Tree" weight="1.0"/>

51 <operator id="wide" isNarrow="false" spec="Exchange" t r e e="
@Tree" weight="1.0"/>

52 <operator id="WilsonBalding" spec="WilsonBalding" t r e e="@Tree"
weight="1.0"/>

53 <operator degreesOfFreedom="1" id="KappaScaler" s c a l eF ac to r="
0.5" spec="ScaleOperator" weight="1.0" parameter=’@kappa’/>

To log the states of the chain at regular intervals, three loggers are defined;
a trace logger (line 54), which can be analysed by the Tracer program, a screen
logger (line 63) which gives feedback on screen while running the chain, and a
tree logger (70) for writing a NEXUS file to store a tree set.

54 <l o g g e r f i leName="beast .$(seed).log" id="tracelog" logEvery="
10000" model="@posterior">

55 <l og i d r e f="posterior"/>
56 <l og i d r e f="likelihood"/>
57 <l og i d r e f="prior"/>
58 <l og id="TreeHeight" spec="TreeHeightLogger" t r e e="@Tree"/

>
59 <l og i d r e f="YuleModel"/>
60 <l og i d r e f="kappa"/>
61 </ l o g g e r>
62

63 <l o g g e r id="screenlog" logEvery="10000">
64 <l og i d r e f="posterior"/>
65 <l og arg="@posterior" id="ESS.0" spec="util.ESS"/>
66 <l og i d r e f="likelihood"/>
67 <l og i d r e f="prior"/>
68 </ l o g g e r>
69

70 <l o g g e r f i leName="beast .$(seed).trees" id="treelog" logEvery="
10000" mode="tree">

71 <l og i d r e f="Tree"/>
72 </ l o g g e r>

The last input for the MCMC BEAST-object is a tree initialiser.
73 < i n i t id="RandomTree" i n i t i a l="@Tree" spec="RandomTree" taxa="

@dna">
74 <populationModel id="ConstantPopulation" spec="

ConstantPopulation">
75 <parameter dimension="1" es t imate="true" id="popSize"

name="popSize" value="1"/>
76 </ populationModel>
77 </ i n i t>

Finally, the XML file needs a closing tag for the run element and a closing
element for the top level beast element.

D
RA

FT
14-7

-2
014

13.4 Exercise 203

78 </run>
79 </ beast>

A notable difference from BEAST 1 is that the order in which BEAST-objects
are specified does not matter.

13.4 Exercise

Are the following XML fragments equivalent assuming that the name space is
’beast.evolution.sitemodel: beast.evolution.substitutionmodel: beast.evolution.likelihood’?

Fragment 1

1 <input name=’substModel’ id="hky" spec="HKY">
2 <input name=’kappa’ i d r e f="hky.kappa" >

3 <input name=’frequencies’ id="freqs" spec="Frequencies">
4 <input name=’data’ i d r e f="alignment"/>
5 </ input>
6 </ input>
7

8 <input spec="TreeLikelihood">
9 <input name=’data’ i d r e f=’alignment’/>

10 <input name=’tree’ i d r e f=’tree’/>
11 <input name=’siteModel’ spec="SiteModel">
12 <input name=’substModel’ i d r e f=’hky’/>
13 </ input>
14 </ input>

Fragment 2

1 <substModel id="hky" spec="HKY" kappa="@hky.kappa" >

2 < f r e q u e n c i e s id="freqs" spec="Frequencies"
3 data="@alignment"/>
4 </ substModel>
5

6 <d i s t r i b u t i o n data="@alignment" spec="TreeLikelihood"
7 t r e e="@tree">
8 <s i teMode l spec="SiteModel" substModel=’@hky’/>
9 </ d i s t r i b u t i o n>

D
RA

FT
14-7

-2
014

14 Coding and design patterns

We will show a few patterns commonly used with BEAST 2, illustrating how the
MCMC framework can be exploited to write efficient models. The way BEAST 2
classes are based on BEAST-objects has the advantage that it does automatically
define a fairly readable form of XML and allows automatically checking of a
number of validation rules. The validation helps in debugging models. These
advantages are based on Java introspection and there are a few peculiarities due
to the limitations of Java introspection which can lead to unexpected behaviour.
These issues will be highlighted in this chapter.

We start with some basic patterns for BEAST-objects, inputs, and the core
StateNode and CaclulationNode BEAST-objects, and how to write efficient
versions of them. We also show a number of the most commonly used BEAST-
objects from the evolution library and how to extend them. Finally, there are
some tips and a list of common errors that one should be aware of.

14.1 Basic patterns

First, we have a look at some basic patterns.

14.1.1 Basic BEAST-object layout

Figure 14.1 shows the layout of most BEAST-objects that you will find in
the BEAST code. We all love to have documented code, so it starts with a
Description annotation, typically a one line comment on the function of the
BEAST-object, but multi-line descriptions are fine as well. The Description is
used in documentation and in online help in GUIs like BEAUti. Omitting such a
description leads to failure of the DocumentationTest. This does not mean that
further Java comments are not allowed or necessary, but the description does
help in documenting classes for code writers as well.

Every BEAST-object implements BEASTInterface. BEASTObject is a base im-
plementaiton of BEASTInterface and many BEASTObject extend the BEASTObject
class.1 By implementing BEASTInterface, services through introspection like
1 Note we use BEAST-objet and BEASTObject for implementions of BEASTInterface and

extensions of BEASTObject respectively.

D
RA

FT
14-7

-2
014

14.1 Basic patterns 205

1 @Descr ipt ion ("Some sensible description of the BEAST -object")
2 pub l i c c l a s s MyBEASTObject extends BEASTObject {
3 <!−− inputs f i r s t −−>
4 pub l i c Input<RealParamater> myInput = new Input < > . . . ;
5

6 <!−− members next −−>
7 p r i v a t e Object myObject ;
8

9 <!−− in i tAndVal idate −−>
10 @Override
11 pub l i c void in i tAndVal idate () { . . . }
12

13 <!−− c l a s s s p e c i f i c methods −−>
14

15 <!−− Overr id ing methods −−>
16 }

Figure 14.1 Basic layout of most BEAST-objects in BEAST.

validation of models are provided. To specify an input for a BEAST-object, just
declare an Input member. Input is a template class, so the type of input can
be specified to make sure that when Inputs are connected to BEAST-objects
the correct type of BEAST-object is used. At least two strings are used in the
constructor of an Input:

• a name of the input, used in the XML, in documentation and in GUIs,
• a description of the input, used in documentation and GUI help.

Other constructors exists to support validation, default values, lists of values,
enumerations of Strings, etc. (see Section 14.2 for details).

It is handy to have all inputs together and in the BEAST code they can
normally be found at the start of a class. Next in Figure 14.1 follow member ob-
jects. Often, these are object that shadow inputs, so that the Input.get method
does not need to be called every time an input object is accessed. For example,
a BEAST-object with input Input<RealParameter> parameterInput can be
shadowed by a RealParameter parameter member object. In the initAndValidate
method, the parameter is then initialised using parameter = parameterInput.get();.

The first method in a BEAST-object is typically the initAndValidate method.
This serves as a place to perform validation on the Inputs, for instance range
checks or check that dimensions of two inputs are compatible. Furthermore, it
is a place to perform everything that normally goes into a constructor. BEAST-
objects are typically created by the XMLParser, which firsts sets values for all
inputs, then calls initAndValidate. Since, Java invokes a constructor before any
input can be assigned a value, a separate method is required to do the initialisa-
tion after inputs are assigned value, for instance, through the XML parser. So,

D
RA

FT
14-7

-2
014

206 Coding and design patterns

1 @Descr ipt ion ("HKY85 (Hasegawa , Kishino & Yano , 1985) "+
2 "substitution model of nucleotide evolution.")
3 @Citation ("Hasegawa , M., Kishino , H and Yano , T. 1985. "+
4 "Dating the human -ape splitting by a "+
5 "molecular clock of mitochondrial DNA. " +
6 "Journal of Molecular Evolution 22:160 -174.")
7 pub l i c f i n a l c l a s s HKY extends Subst i tut ionModel . Base {
8 pub l i c Input<RealParameter> kappa = new Input<

RealParameter>("kappa" ,
9 "kappa parameter in HKY model" , Va l idate .REQUIRED) ;

10

11 @Override
12 pub l i c void in i tAndVal idate () throws Exception { . . . }
13

14 @Override
15 pub l i c void g e t T r a n s i t i o n P r o b a b i l i t i e s (double d i s tance ,

double [] matrix) { . . . }
16

17 @Override
18 protec ted boolean r e q u i r e s R e c a l c u l a t i o n () { . . . }
19

20 @Override
21 protec ted void s t o r e () { . . . }
22

23 @Override
24 protec ted void r e s t o r e () { . . . }
25 }

Figure 14.2 Layout of the HKY BEAST-object in BEAST.

BEAST-objects do not have a constructor typically (though see Section 14.2.3
for an exception).

After the initialisation, class specific methods and overriding methods (with
notably store, restore and requiresRecalculation at the end) conclude a
BEAST-object.

Figure 14.2 shows the skeleton of a larger example. Note that apart from the
Description annotation, there is also a Citation annotation that can be used
to list a reference and DOI of a publication. At the start of a run, BEAST visits
all BEAST-objects in a model and lists the citations, making it easy for users to
referenced work done by BEAST-object developers.

The HKY BEAST-object has a single input for the kappa parameter. There
are more details on Input construction and validation in Section 14.2. There
is no further validation required in the initAndValidate method, where only
a few shadow parameters are initialised. The getTransitionProbabilities
method is where the work for a substitution model takes place. The methods
requiresRecalculation, store and restore complete the BEAST-object with
implementation of CalculationNode methods.

D
RA

FT
14-7

-2
014

14.2 Input patterns 207

14.2 Input patterns

Inputs can be created for primitives, BEAST-objects, lists or enumerations. How-
ever, inputs cannot be template classes, with the exception of Lists, due to Java
introspection limitations, unless you explicitly provide the class as argument to
an Input constructor. By calling the appropriate constructor, the XMLParser
validates the input after assigning values and can check whether a REQUIRED
input is assigned a value, or whether two inputs that restricted by a exclusive-or
(XOR) rule have exactly one input specified.

14.2.1 Input creation

Inputs can be simple primitives, like Double, Integer, Boolean, String. To create a
primitive input, use the Input<Primitive> constructor, for example a Boolean
input can be created like this.

1 pub l i c Input<Boolean> s c a l e A l l I n p u t =
2 new Input<Boolean>("scaleAll" ,
3 "if true , all elements of a parameter (not tree) are

scaled , otherwise one is randomly selected" ,
4 new Boolean (f a l s e)) ;

Note at least two arguments are required for an Input constructor: the name
of the input and a short description of the function of the input. Inputs of a
BEAST-object can be other BEAST-objects, which can be created similarly like
this.

1 pub l i c Input<Frequencies> f r eq s Input =
2 new Input<Frequencies >("frequencies" ,
3 "substitution model equilibrium state frequencies") ;

Inputs can have multiple values. When a list of inputs is specified, the Input
constructor should contain a (typically empty) List as a start value so that the
type of the list can be determined through Java introspection (as far as we
know this cannot be done from the declaration alone due to Java introspection
limitations).

1 pub l i c Input<List<RealParameter>> parametersInput =
2 new Input<List<RealParameter>>("parameter" ,
3 "parameter , part of the state" ,
4 new ArrayList<RealParameter>()) ;

To provide an enumeration as input, the following constructor can be used: it
takes the usual name and description arguments, then the default value and an
array of strings to choose from. During validation it is checked that the value
assigned is in the list.

1 pub l i c enum LOGMODE { autodetect , compound , t r e e }
2

3 pub l i c Input<LOGMODE> modeInput = new Input<LOGMODE>("mode" ,

D
RA

FT
14-7

-2
014

208 Coding and design patterns

4 "logging mode , one of " + LOGMODE. va lue s () ,
5 LOGMODE. autodetect , LOGMODE. va lue s ()) ;

14.2.2 Input rules

To provide some basic validation, an extra argument can be provided to the
Input constructor. By default, inputs are considered to be OPTIONAL, that is,
need not necessarily be specified. If an input is a REQUIRED input, this validation
rule can be added as argument to the constructor of the input as follows.

1 pub l i c Input<Parameter> kappaInput =
2 new Input<Parameter>("kappa" ,
3 "kappa parameter in HKY model" ,
4 Val idate .REQUIRED) ;

When the XMLParser processes an XML fragment, these validation rules are
automatically checked. So, when the kappa input is not specified in the XML,
the parser throws an exception. These input rules are also used in BEAUti to
make sure the model is consistent, and in documentation generated for BEAST-
objects.

If a list of inputs need to have at least one element specified, the required
argument needs to be provided.

1 pub l i c Input<List<Operator>> operato r s Input =
2 new Input<List<Operator>>("operator" ,
3 "operator for generating proposals in MCMC state space" ,
4 new ArrayList<Operator>() , Va l idate .REQUIRED) ;

Sometimes either one or another input is required, but not both. In that case
an input is declared XOR and the other input is provided as extra argument.
The XOR goes on the second Input. Note that the order of inputs matters since
at the time of constructing of an object the members are created in order of
declaration. This means that the first input cannot access the second input at
the time just after it was created. Therefore, the XOR rule needs to be put on
the second input.

1 pub l i c Input<Tree> t r e e Input =
2 new Input<Tree>("tree" ,
3 "if specified , all tree branch length are scaled") ;
4 pub l i c Input<Parameter> parameterInput =
5 new Input<Parameter>("parameter" ,
6 "if specified , this parameter is scaled" ,
7 Val idate .XOR, t r e e Input) ;

14.2.3 Input rule of base class is not what you want.

Suppose an Input is REQUIRED for a base class you want to override, but for the
derived class this Input can be OPTIONAL. The way to solve this is to set the In-
put to OPTIONAL in the constructor of the derived class. For example, for the GTR

D
RA

FT
14-7

-2
014

14.3 InitAndValidate patterns 209

BEAST-object represents the GTR substitution model for nucleotides and has
six individual inputs for rates. GTR derives from GeneralSubstitutionModel,
and its rates are not used. For GeneralSubstitutionModel the rates input is
required, but for the GTR BEAST-object, it is ignored. Changing the validation
rule for an input is done in the constructor.

1 pub l i c GTR() {
2 r a t e s . se tRule (Val idate .OPTIONAL) ;
3 }

Note that the constructor needs to be public, to prevent IllegalAccessExceptions
on construction by e.g. the XMLParser.

14.2.4 Access inputs for reading, not writing!

BEAST-object inputs should typically only be accessed to get values from, not
assign values to. For a RealParameter input named input, use input.get()
to get the parameter of the input. To get the value of the RealParameter, use
input.get().getValue(). A common pattern is shadowing the input so that
the get methods does not need to be accessed every time.

1 RealParamater p ;
2 <!−− in i n i t andVa l i da t e −−>
3 p = input . get () ;
4 <!−− in methods doing c a l c u l a t i o n s −−>
5 double value = p . getValue () ;

The input only represent the link between BEAST-objects. Say, an input
inputX has a BEAST-object X as its value. By ‘writing’ and input to a new
BEAST-object Y a new link is created to Y, but that does not replace the BEAST-
object X. This is not a problem when X has no other outputs than inputX, but
it can lead to unexpected results when there are more outputs. There are excep-
tions, for example programs for editing models, like BEAUti and ModelBuilder,
but care must be taken when assigning input values.

14.3 InitAndValidate patterns

The initAndValidate method partly has the function of a constructor, so is
used for initialising internal variables such as variables shadowing inputs. The
other task is to ensure that the combination of input values is reasonable, and if
not, change the input values or throw an exception.

14.3.1 Input parameter dimension is unknown...

A common situation is where the dimension of a parameter is easy to calculate,
but is a nuisance for the user to define. For example, the number of categories in

D
RA

FT
14-7

-2
014

210 Coding and design patterns

the relaxed clock model should be equal to the number of branches in a tree. The
initAndValidate method is the ideal place to calculate parameter dimensions
and assign it to the parameter using a call parameter.setDimension(dim).

14.3.2 Input parameter value is unknown...

Another common situation is where it is easy to determine initial values for pa-
rameters. The categories in the relaxed clock model are initialised as 0, 1, . . . , n−1
where n is the dimension of the categories parameter. For large n, users will find
it annoying to get this correct in the XML. To do this in the initAndValidate()
method, create a new parameter X and use input.get().assignFromWithoutID(X)
to initialise values.

1 @Override
2 p u b l i c void in i tAndVal idate () throws Exception {
3 // determine dimension , number of Nodes in a t r e e minus 1 here
4 i n t categoryCount = t r e e . get () . getNodeCount () − 1 ;
5
6 // i n i t i a l i s e array with pre−c a l c u l a t e d va lues
7 I n t e g e r [] c a t e g o r i e s = new I n t e g e r [categoryCount] ;
8 f o r (i n t k = 0 ; k < categoryCount ; k++) {
9 c a t e g o r i e s [k] = k ;

10 }
11
12 // create new Parameter with new va lues
13 IntegerParameter other = new IntegerParameter (c a t e g o r i e s) ;
14 c a t e g o r i e s . assignFromWithoutID (other) ;
15 }

14.4 CalculationNode patterns

CalculationNodes are classes jointly responsible for efficiently calculating values
of interest, in particular the posterior.

14.4.1 Using requiresRecalculation

The requiresRecalculation method in a CalculationNode is called in the
MCMC loop just after a new proposal is made by an operator (see Section
12.3.1). The task of the method is to check whether any of its inputs changed
that might affect the internal state of the CalculationNode. There are two po-
tential sources that could have changed; inputs of StateNodes and inputs of other
CalculationNodes. To check whether a StateNode is dirty, call somethingIsDirty().
For CalculationNodes, call isDirtyCalculation.

Note, since a StateNode is a CalculationNode, you should test that a class
is a StateNode before testing it is a CalculationNode.

1 p u b l i c boolean r e q u i r e s R e c a l c u l a t i o n () {
2 // f o r StateNode inputs only
3 i f (stateNodeInput . get () . someth ingIsDirty ()) {
4 r e t u r n tr ue ;
5 }

D
RA

FT
14-7

-2
014

14.4 CalculationNode patterns 211

6
7 // f o r CalculationNode inputs only
8 i f (c a l c u l a t i o nN o d e I n p u t . get () . i s D i r t y C a l c u l a t i o n ()) {
9 r e t u r n tr ue ;

10 }
11 r e t u r n f a l s e ;
12 }

14.4.2 Lean calculationNode

The difference between a lean and a fat CalculationNode is that a lean one does
not store intermediate results, while a fat one does. As a consequence, a lean
CalculationNode needs to recalculate its internal state after a call to restore,
while the fat CalculationNode just reverts back to the previously stored values.
The choice between lean and fat is determined by the amount of work done in an
update. If the calculation is relatively expensive choose a fat CalculationNode,
but for simple calculations a lean CalculationNode is simpler and does not hurt
performance by much.

To manage a lean CalculationNode, add a flag to indicate whether the in-
ternal state is up to date (needsUpdate in the following fragment). At time of
initialisation, set the flag to true. When a calculation is done, reset the flag. The
requiresRecalculation method should only set the flag when any of its inputs
are dirty. Note that the store method does not change the flag, but restore
does.

1 boolean needsUpdate ; // f l a g to i n d i c a t e i n t e r n a l s t a t e i s up to date
2 Object someThing ; // the value to c a l c u l a t e
3
4 p u b l i c void in i tAndVal idate () {needsUpdate = t rue ;}
5
6 // CalculationNode s p e c i f i c i n t e r f a c e t h a t returns r e s u l t s
7 p u b l i c Object calculateSomeThing () {
8 i f (needsUpdate) {
9 update () ;

10 }
11 r e t u r n someThing ;
12 }
13
14 void update () {
15 someThing = . . . ;
16 needsUpdate = f a l s e ;
17 }
18
19 p u b l i c boolean r e q u i r e s R e c a l c u l a t i o n () {
20 i f (someInputIsDirty ()) {
21 needsUpdate = t rue ;
22 r e t u r n tr ue ;
23 }
24 r e t u r n f a l s e ;
25 }
26
27 p u b l i c void s t o r e () { super . s t o r e () ;}
28
29 p u b l i c void r e s t o r e () {
30 needsUpdate = t rue ;
31 super . r e s t o r e () ;
32 }

D
RA

FT
14-7

-2
014

212 Coding and design patterns

14.4.3 Fat calculationNode

A fat CalculationNode stores intermediate results of a calculation. So, apart
from the result itself it has to reserve memory for the stored results in the
initAndValidate method. When the store method is called, the intermediate
results need to be copied to the stored results objects. Restoring amounts to
simply swapping references between intermediate and stored results.

1 Object i n t e r m e d i a t e R e s u l t ;
2 Object s t o r e d I n t e r m e d i a t e R e s u l t ;
3
4 p u b l i c void in i tAndVal idate () {
5 // reserve space f o r r e s u l t o b j e c t s
6 i n t e r m e d i a t e R e s u l t = new . . . ;
7 s t o r e d I n t e r m e d i a t e R e s u l t = new . . . ;
8 }
9

10 // CalculationNode s p e c i f i c i n t e r f a c e t h a t returns r e s u l t s
11 p u b l i c Object calculateSomeThing () {
12 i n t e r m e d i a t e R e s u l t = c a l c I n t e r m e d i a t e R e s u l t ()
13 r e t u r n c a l c R e s u l t (i n t e r m e d i a t e R e s u l t) ; ;
14 }
15
16 p u b l i c void s t o r e () {
17 // copy intermediateResu l t to s toredIntermediateResu l t
18 . . .
19 super . s t o r e () ;
20 }
21
22 p u b l i c void r e s t o r e () {
23 Object tmp = i n t e r m e d i a t e R e s u l t ;
24 i n t e r m e d i a t e R e s u l t = s t o r e d I n t e r m e d i a t e R e s u l t ;
25 s t o r e d I n t e r m e d i a t e R e s u l t = tmp ;
26 super . r e s t o r e () ;
27 }

14.5 Common extensions

There are a few classes that we would like to highlight for extensions and point
out a few notes and hints on how to do this. To add a clock model, implement
the BranchRateModel interface, which has just one method getRateForBranch.
To add a new Tree prior, extend TreeDistribution (not just Distribution)
and implement calculateLogP.

14.5.1 Adding a substitution model

Extend SubstitutionModel.Base class to add a new substitution model. A sub-
stitution model should implement the getTransitionProbabilities method,
which returns the transition matrix for a branch in the tree. SubstitutionModel
is a CalculationNode, so it may be worth implementing it as a fat CalculationNode.

D
RA

FT
14-7

-2
014

14.6 Tips 213

14.5.2 Adding an operator

To create a new operator, extend the Operator class. An operator should have
at least one input with a StateNode to operate on an it should implement the
proposal method, which changes the State. The proposal method should re-
turn the Hastings ratio. However, it should return Double.NEGATIVE INFINITY
if the proposal is invalid, not throw an Exception. For Gibbs operators, re-
turn Double.POSITIVE INFINITY to ensure the proposal will always be accepted.
Consider implementing optimize() if there is a parameter of the operator, such
as a scale factor or window size. The chain will attempt to change its value, which
can greatly help in getting a better acceptance rate and thus better mixing of
the chain.

Note, when using random numbers, instead of the standard java.util.Random
class use the beast.util.Randomizer class. This class uses the Mersenne twister
algorithm for efficiently generating random numbers that are ‘more random’ than
those produced by the java.util.Random class. Further, it is initialised using
the seed given to the BeastMain class. Therefore, restarting BEAST with the
same seed will reproduce the exact same set of random numbers, which makes
it easier to debug operators.

14.5.3 Adding a logger

To add a logger, simply implement the Loggable interface, which has three
methods init, log and close. There are two main forms of loggers in BEAST,
namely trace logs and tree logs. A trace log is a tab-separated file with one log
entry per line and a header listing the columns of the log entries. To create a
logger that fits in a trace log, the init method should print the tab-separated
headers and the log methods should print tab-separated values (close can be
left empty). Note that the number of entries in the header should match the
number of entries added by the log method. Tree logs are produced in NEXUS
format.

14.6 Tips

14.6.1 Debugging

Debugging MCMC chains is a hazardous task. To help checking that the model is
valid, BEAST recalculates the posterior the first number of steps for every third
sample. Before recalculating the posterior, all StateNodes become marked dirty
so all CalculationNodes should update themselves. If the recalculated posterior
differs from the current posterior, BEAST halts and reports the difference. To
find the bug that caused this dreaded problem, it is handy to find out which
operator caused the last state change, and thus which CalculationNodes might

D
RA

FT
14-7

-2
014

214 Coding and design patterns

not have updated themselves properly. Have a look at the MCMC doloop method
and the debugging code inside for further details.

14.6.2 Trees with traits

A common problem is to associate properties to various components of a tree, for
example, rate categories in the relaxed clock model. The easiest way to associate
a trait to the nodes (or branches) of a tree is to define a parameter with dimension
equal to the number of nodes (or branches). Nodes in the tree with n leaf nodes,
so 2n− 1 nodes in total, are numbered as follows.

• Leaf nodes are numbered 0, . . . , n− 1.
• Internal nodes are numbered n, . . . , 2n− 1.
• Root node is not treated as special internal node, so no number is guaranteed.

This way entry k in the parameter can be associated with the node numbered
k. Some extra care needs to be taken when the trait is associated with branches
instead of nodes, since the root node is not automatically numbered 2n− 1. The
TreeWithMetaDataLogger is useful for logging traits on trees.

14.7 Known ways to get into trouble

An Input is not declared public.
If Inputs are not public, they cannot get values assigned by for instance the
XMLParser. The parser will fail to recognise the input and will suggest to assign
the value to one of the known public inputs if the input is specified in the XML.

Type of input is a template class (other than List).
Thanks to limitations of Java introspection, Inputs should be of a type that is
concrete, and apart from List<T> no template class should be used since it is
not possible to determine the type of input automatically otherwise. If you really
need an input that is a template class, there are Input constructors where you
can provide the class as extra argument.

Store/restore do not call super.store()/super.restore().
Obviously, not calling store/restore on super classes may result in unexpected
behaviour. The base implementation in CalculationNode sets a flag indicating
that the current state is clean, and not setting the flag may lead to inefficient
calculation of the posterior.

Derive from BEASTObject instead of CalculationNode
Every BEAST-object in a model in between a StateNode that is part of the State
and the posterior input of MCMC must be a CalculationNode for efficient model
updating to work properly. The framework will point out when this mistake is
made.

D
RA

FT
14-7

-2
014

14.8 Exercise 215

Using java.util.Random instead of beast.util.Randomizer
The seed passed on from the command line is used to initialise Randomizer, not
Random. So, rerunning the same XML with the same seed will result in exactly
the same chain, which makes debugging easier when using Randomizer.

Using a reserved input name
It is often tempting to use name as the name for an input, but this is a reserved
for special use by the XML parser. The other reserved names are id, idref and
spec. Running the XMLElementNameTest test will warn for such a mistake.

Using an input name already defined in super class
Input names should be unique, but it can happen that by mistake an input
is given a name that is already defined in a super class. Again, running the
XMLElementNameTest test will warn for such a mistake.

Unit tests are missing
Testing is a tedious but necessary part of development. Packages can be set up
to be tested every time code is checked in through continuous automation testing
software like Hudson. In fact, at http://hudson.cs.auckland.ac.nz/ you can
see the state of the latest development code and a number of packages. You can
configure your build scripts so that generic tests like the XMLElementNameTest,
ExampleXmlParsingTest and DocumentationTest are run on your code as well.

Improper description or input tip text provided in
BEAST-object
The documentation nazi will come and get you!

14.8 Exercise

Write a clock model that, like the uncorrelated relaxed clock, selects a rate for
a branch, but where the number of different categories is limited to a given
upper bound. Implement it as a lean CalculationNode. Optimise the class by
implementing it as a fat CalculationNode.

http://hudson.cs.auckland.ac.nz/

D
RA

FT
14-7

-2
014

15 Putting it all together

BEAST 1 does a fantastic job in performing a wide range of phylogenetic anal-
yses. The success of BEAST 1 has meant that many researchers started using
it and that demand has fuelled tremendous growth in its source code base. An
unintended side effect was that it made it hard for new-comers to learn the code.
Since a lot of the work done with BEAST is at the cutting edge of phylogenetic
research, parts of the code are used to explore new ideas. Since not all ideas
work out as expected, some experimental code is abandoned. However, only if
you know what to look for is it clear which classes are experimental and which
are production code. A partial solution to these problems in BEAST 2 is the
package. A package is a library based on BEAST 2 that can be installed sep-
arately from the BEAST 2 core libraries. This way, the core BEAST 2 library
remains small and all its classes are production code. This makes it easier for
new developers and PhD students in phylogenetic research to learn BEAST 2.
It also makes development work less cumbersome, so that BEAST 2 acts more
like a platform for Bayesian phylogenetics, rather than a single monolithic code
base. The platform is intended to be quite stable and individual researchers can
develop and advertise packages independently of the BEAST 2 release cycle.
This provides a cleaner mechanism for providing correct attribution of research,
as individual packages can be published separately. Furthermore, it separates
out experimental code from the core, which makes it easier to determine which
classes are relevant and which are not.

Users can install packages effortlessly through the package manager in BEAUti.
Developers can check out code from the package repository. Some packages al-
ready available are:

• SNAPP for performing multi-species coalescent analysis for SNP and AFLP
data.
• BDSKY contains a birth-death skyline tree prior.
• subst-BMA for Bayesian model averaging over non-contiguous partitions and

substitution models.
• RB contains a reversible-jump substitution model and auto-partition function-

ality.
• BEASTlabs has a range of utilities such as multi chain MCMC, some experi-

mental methods of inference, a number of experimental likelihood cores.
• MASTER a framework for simulation studies.

D
RA

FT
14-7

-2
014

15.1 What is a package? 217

• MultiTypeTree contains classes for using the structured coalescent.
• BEASTShell for scripting BEAST, facilitating ad hoc exploration, work-flow

for simulation studies and creating JUnit tests.
• BEAST-classic has a tool for porting classes from BEAST 1 and contains

classes that facilitate ancestral reconstruction and continuous phylogeography.

A number of other packages are in development. To get an overview of the most
recently available packages keep an eye on the BEAST 2 wiki.

In the next section, we will have a look at what constitutes a package and how
to let the world know the package is ready for use. Making a package available
via a GUI like BEAUti can increase its popularity. In Section 15.2 we will have
a look at the BEAUti and its templates. We give a detailed example to illustrate
the various aspects of package development in Section 15.3.

15.1 What is a package?

A package consists of the following components:

• A jar file that contains the class files of BEAST-objects, all supporting code
and potentially some classes for supporting BEAUti. Other libraries used for
developing the package can be added separately.
• A jar file with the source code. BEAST 2 is licensed under LGPL, since the

BEAST team are strong advocates for open source software. So, all derived
work should have its source code made available.
• Example XML files illustrating typical usage of the BEAST-object, similar to

the example files distributed with BEAST 1.
• Documentation describing the purpose of the package and perhaps containing

articles that can serve as a reference for the package.
• A BEAUti 2 template can be added so that any BEAST-objects in the package

are directly available for usage in a GUI.
• A file named version.xml which contains the name and version of the package,

and the names and versions of any other packages it depends on. For instance,
the version.xml file for a package which depends only on the current release
of BEAST would have the following simple structure:

1 <addon name=’myPackage ’ ve r s i on=’1.0.0’>
2 <depends on=’beast2’ a t l e a s t=’2.2.0’/>
3 </addon>

The package consists of a zip-archive containing all of the above. To make the
package available for other BEAST users, the zip-file should be downloadable
from a public URL. To install a package, download it and unzip it in the beast2

D
RA

FT
14-7

-2
014

218 Putting it all together

directory, which is a different location depending on the operating system. 1 This
is best done through BEAUti, but can also be done from the command line using
the packagemanager program. BEAST and BEAUti will automatically check out
these directories and load any of the available jar files.

BEAST expects packages to follow the following directory structure:
myPackage.src.jar source files
examples/ XML examples
lib/ libraries used (if any)
doc/ documentation
templates/ BEAUti templates (optional)
version.xml Package meta-data file

The natural order in which to develop a package is to develop one or more
BEAST-objects, test (see Section 15.3 and document these BEAST-objects, de-
velop example XML files, and develop BEAUti support. To start package de-
velopment, you need to check out the BEAST 2 code and set up a new project
that has a dependency on BEAST 2. Details for setting up a package in IDEs
like Eclipse or Intellij can be found on the BEAST 2 wiki. Directions on writing
BEAST-objects were already discussed in Chapter 14.

15.2 BEAUti

To make a package popular it is important to have GUI support, since many users
are not keen to edit raw BEAST XML files. BEAUti is a panel based GUI for
manipulating BEAST models and reading and writing XML files. Unfortunately,
a lot of concepts are involved in GUI development, as well as understanding
BEAST models. Consequently, this section is rather dense, so be prepared for a
steep learning curve. This sections aims at introducing the basic concepts, but
once you read it you probably want to study the templates that come with the
BEAST distribution as well before writing your own.

The easiest way to make a BEAST-object available is to write a BEAUti
template, which can define new BEAUti panels and determines which sub-models
goes in which BEAUti panel. A BEAUti template is stored in an XML file in
BEAST XML format. There are two types of templates: main templates and
sub-templates. Main templates define a complete analysis, while sub-templates
define a sub-models, for example a substitution model, which can be used in
main templates like the Standard or *BEAST template. Main templates are
specified using a BeautiConfig object, while sub-templates are specified through
BeautiSubTemplate objects.

1 The package directory is $user.home/BEAST for Windows,
$user.home/Library/Application Support/BEAST for Windows, $user.home/.beast2 for
Linux, where $user.home is the user’s home directory for the relevant OS.

D
RA

FT
14-7

-2
014

15.2 BEAUti 219

15.2.1 BEAUti components

The important objects in a template are BeautiPanelConfig and BeautiSubtemplate.
BeautiPanelConfig objects define the part of a model shown in a panel. A panel
can show one BEAST-object or a list of BEAST-objects. As you would expect,
BEAUti uses the fact that everything in BEAST is a BEAST-object connected to
other BEAST-objects through their inputs. In fact, one way to look at BEAUti
is as an application that has the task of setting the values of inputs of BEAST-
objects. There are three types of inputs: primitive, BEAST-object and list of
BEAST-objects. For primitive inputs such as integer and string values, this is
just a matter of allowing the user to enter a value. For BEAST-object inputs
there are possibly other BEAST-objects that can take their place. The task for
BEAUti is connecting and disconnecting BEAST-objects with the proper inputs.
For list inputs, BEAUti is allowed to connect more than one BEAST-object to
such input.

A BeautiSubTemplate specifies a sub-graph and a list of rules on how to con-
nect and disconnect the sub-graph with other components in the graph. These
rules are contained in BeautiConnector BEAST-objects and there are often
many of these rules. A BeautiConfig BEAST-object has one special BeautiSubTemplate,
the partition-template, which is instantiated whenever a new partition is created.

Note that some panels are only defined in the context of a partition (e.g. a clock
model panel) while others (e.g. the MCMC panel) are not. The BeautiPanelConfig
BEAST-object needs to know if this is the case and which part of the partition
(clock, site or tree model) forms its context.

The description here is just a high level overview of the way BEAUti works
and is configured. For a detailed description of the inputs of various BEAUti
BEAST-objects, we refer to the description in the code.

15.2.2 Input-editors for BEAUti

BEAUti essentially is a program for manipulating inputs of BEAST-objects. The
InputEditor class is the base class for all input editors and a number of stan-
dard input editors is already implemented. There are input editors for primitives
(String, Integer, Boolean, Real) and a generic BEASTObjectInputEditor. The
latter just lists all inputs of a BEAST-object. There are also more specialised
input editors, such as the TipDatesInputEditor for editing date information for
taxa. Every input editor lists the types of inputs it can handle, which BEAUti
uses to determine which input editor to use.

The BEASTObjectInputEditor shows the id of the BEAST-object, say X, in
a combo-box. Since all but one BEAST-object (typically the MCMC BEAST-
object is the exception) is an input to another BEAST-object, BEAUti can de-
termine the type of the input and suggest a replacement of BEAST-object X.
BEAUti looks at the list of sub-templates, and the type of the sub-template tells

D
RA

FT
14-7

-2
014

220 Putting it all together

BEAUti whether the sub-template is compatible with the parent input. If so, it
is listed in the combo-box as a replacement. It is also possible to expand X and
show inputs of BEAST-object X by settings in the template. When the inputs of
X are expanded, for every input of X a suitable input-editor is found and added
to the panel. It is also possible to suppress some of the inputs of X in order to
keep the GUI look clean or hide some of the more obscure options.

There are a number of ways to define the behaviour of an input editor, such
as whether to show all inputs of a BEAST-object, and whether to suppress some
of the inputs. For list input editors, buttons may be shown to add, remove or
edit items from a list. For example, for the list operators it makes sense to allow
editing, but not adding.

To write an input editor, derive a class from InputEditor or from some class
that already derives from InputEditor. In particular, if the input editor you
want to write can handle list inputs, then derive from ListInputEditor.

The important methods to implement are type or types and init. The type
method tells BEAUti to use this input editor for the particular input class (use
types if multiple classes are supported). The init method should add compo-
nents containing all the user interface components for manipulating the input.
This is where custom made code can be inserted to create the desired user inter-
face for an input. A complex example is the tip-dates input editor, which can be
used to edit the traits-input of a tree. Though the tip dates are simply encoded
as comma separated string with name=value pairs, it is much more desirable to
manipulate these dates in a table, which is what the tip dates input editor does.

Input editors are discovered by BEAUti through Java introspection, so they
can be part of any jar file in any package. However, they are only expected to
be in the beast.app package and won’t be picked up from other packages.

For more details, have a look at existing input editors in BEAST. It is often
easy to build input editors out of existing ones, which can save quite a bit of
boilerplate code.

15.2.3 BEAUti template file format

A good place to become familiar with the format and structure of BEAUti tem-
plates is by examining the files in the templates directory installed with BEAST.
Standard.xml is a main-template for the most common kind of analysis. It re-
lies on a number of merge points so sub-templates can be specify substitution
models, clock models and parametric distributions through packages that can be
merged into a main template (see end of this Section).

The larger part of the standard template consists of a BeautiConfig ob-
ject specification and there is a short XML fragment at the end specifying a
MCMC object with a bare-bones analysis. As soon as an alignment is imported
in BEAUti, the partition-template in the BeautiConfig object will be instanti-
ated and the MCMC graph will be connected with the appropriate tree likeli-

D
RA

FT
14-7

-2
014

15.2 BEAUti 221

hoods, priors, operators, loggers and initialisers. When an alignment is imported
a name for the alignment is deduced and wherever the phrase $(n) occurs in a
sub-template it will be replaced by the name of the alignment.

Figure 15.1 describes the Yule tree prior, which is a typical template with
a parameter for the birth rate and prior on this birth rate. Line 1 defines the
sub-template for partition $(n).

A sub-template has an id that is used in combo-boxes in BEAUti to identify the
sub-template. The class attribute indicates that the sub-template produces a
BEAST-object of this type. One task of BEAUti is to create new BEAST-objects,
and connect them to an input. The way BEAUti finds potential BEAST-objects
to connect to an input is by testing whether the type of an input is compatible
with the type of a sub-template. If so, the sub-template is listed in the combo-box
for the input in the BEAST-object input editor. The mainid attribute identifies
the BEAST-object that has the type listed in class. Note the t:$(n) part of
the mainid attribute. A sub-template is created in the context of a partition,
and wherever there is the string $(n) in the sub-template this is replaced by the
name of the partition. BEAUti distinguishes three items that form the context of
a partition: its site model, clock model and tree. These are identified by having
respectively s:$(n), c:$(n) and t:$(n) in their id. In the Yule-prior template,
the prior, parameter and operators are all in the context of a tree, so these all
have t:$(n) in their ids.

The CDATA section from line 2 to 8 contains the sub-graph created when the
template is activated. For a Yule prior on the tree (line 3), a prior on the birth
rate (line 6) and a scale operator on the birth rate (line 7) are created. Lines 9
to 14 specify the connections that need to be made through BeautiConnectors.
A connector specifies a BEAST-object to connect from (through the srcID at-
tribute), a BEAST-object to connect to (through the targetID attribue) and
an inputName specifies the name of the input in the target BEAST-object to
connect with. The connector is only activated when some conditions are met.
If the condition is not met, BEAUti will attempt to disconnect the link (if it
exists). The conditions are separated by the ’and’ keyword in the if attribute.
The conditions are mostly of the form inposterior(YuleModel.t:$(n)), which
tests whether the BEAST-object with id YuleModel.t:$(n) is a predecessor of
a BEAST-object with id posterior in the model. Further, there are conditions
of the form Tree.t:$(n)/estimate=true, used to test whether an input value
of a BEAST-object has a certain value. This is mostly relevant to test whether
StateNodes are estimated or not, since if they are not estimated no operator
should be defined on it, and logging is not very useful.

Line 9 connects the prior to the BEAST-object with id ’prior’. This refers
to a compound distribution inside the MCMC, and the Yule prior is added to
the input with name ‘distribution’. The birth rate parameter is added to the
state (line 10), the prior on the birth rate is added to the prior (line 11), the
scale operator is connected to the MCMC operators input (line 12) and the Yule
prior and birth rate are added to the trace log (line 13 and 14). Note that these

D
RA

FT
14-7

-2
014

222 Putting it all together

1 <subtemplate id=’YuleModel ’ spec=’BeautiSubTemplate ’ c l a s s=’beast .
evolution . speciation . YuleModel ’ mainid=’YuleModel .t: $(n)’>

2 < ! [CDATA[
3 <ob j e c t spec=’YuleModel ’ id=" YuleModel .t: $(n)" t r e e=’@Tree .t: $(n

)’>
4 <parameter name=’birthDiffRate ’ id=" birthRate .t: $(n)" value=

’1.0 ’/>
5 </ ob j e c t>
6 <p r i o r id=’YuleBirthRatePrior .t: $(n)’ spec=’Prior ’ x=’@birthRate

.t: $(n)’><d i s t r spec=" beast .math. distributions . Uniform "
lower=’0’ upper=’1000 ’/></ p r i o r>

7 <s c a l e id=’YuleBirthRateScaler .t: $(n)’ spec=’ScaleOperator ’
s c a l e Fac t o r="0.75" weight="3" parameter=" @birthRate .t: $(n)"/
>

8]]>
9 <connect spec=’BeautiConnector ’ srcID=’YuleModel .t: $(n)’

target ID=’prior ’ inputName=’distribution ’ i f=’inposterior (
YuleModel .t: $(n)) and Tree.t: $(n)/ estimate =true ’/>

10 <connect spec=’BeautiConnector ’ srcID=’birthRate .t: $(n)’
target ID=’state ’ inputName=’stateNode ’ i f=’inposterior (
YuleModel .t: $(n)) and birthRate .t: $(n)/ estimate =true ’/>

11 <connect spec=’BeautiConnector ’ srcID=’YuleBirthRatePrior .t: $(n)
’ target ID=’prior ’ inputName=’distribution ’ i f=’inposterior (
YuleModel .t: $(n)) and birthRate .t: $(n)/ estimate =true ’/>

12 <connect spec=’BeautiConnector ’ srcID=’YuleBirthRateScaler .t: $(n
)’ target ID=’mcmc ’ inputName=’operator ’ i f=’inposterior (
YuleModel .t: $(n)) and birthRate .t: $(n)/ estimate =true ’/>

13 <connect spec=’BeautiConnector ’ srcID=’YuleModel .t: $(n)’
target ID=’tracelog ’ inputName=’log ’ i f=’inposterior (
YuleModel .t: $(n)) and Tree.t: $(n)/ estimate =true ’/>

14 <connect spec=’BeautiConnector ’ srcID=’birthRate .t: $(n)’
target ID=’tracelog ’ inputName=’log ’ i f=’inposterior (
YuleModel .t: $(n)) and birthRate .t: $(n)/ estimate =true ’/>

15 </ subtemplate>

Figure 15.1 BEAUti sub-template for a Yule model.

connections are only executed if the condition specified in the if input is true,
otherwise the connecting is attempted to be disconnected.

Connectors are tested in order of appearance. It is always a good idea to
make the first connector the one connecting the main BEAST-object in the sub-
template, since if this main BEAST-object is disconnected, most of the others
should be disconnected as well. For this tree-prior, the tree’s estimate flag can
become false when the tree for the partition is linked.

Instead of defining all sub-templates explicitly for the BeautiConfig BEAST-
object, a merge-point can be defined. Before processing a template, all merge-
points are replaced by XML fragments in sub-templates. For example, the main
template can contain <mergepoint id=’parametricDistributions’/> inside a
BeautiConfig BEAST-object and a sub-template can contain an XML fragment
like this.

D
RA

FT
14-7

-2
014

15.3 Variable selection based substitution model package example 223

1 <mergewith po int=’substModelTemplates ’>
2 <subtemplate id=’JC69’ c l a s s=’beast.evolution.

substitutionmodel.JukesCantor ’ mainid=’JC69.s:$(n)’>
3 < ! [CDATA[
4 <d i s t r spec=’JukesCantor ’ id=’JC69.s:$(n)’/>
5]]>
6 </ subtemplate>
7 </mergewith>

Line 1 has a mergewith element that refers to merge-point with id substModelTemplates
defined in the main template. Lines 2 to 6 defines a sub-template that will be
inserted in the XML of the main template. The sub-template needs an id, a class
specifying the class of the input it can be connected to and the id of the BEAST-
object that needs to be connected. The actual BEAST-object that is created
when the sub-template is activated is defined inside a CDATA section starting
at line 3 with <![CDATA[and closing at line 5 with]]>. The BeautiTemplate has
an input called ’value’ which contains the XML fragment specifying all BEAST-
objects in the sub-graph and everything inside the CDATA section is assigned
to that input.

15.3 Variable selection based substitution model package example

The variable selection based substitution model (VS model) is a substitution
model that jumps between six substitution models using BSVS. The frequencies
at the root of the trees are empirically estimated from sequence data. Figure
15.2 shows the parameters involved in the six substitution models. Since BEAST
normalises transition probability matrices such that on average one substitution
is expected per unit length on a branch, one parameter can be set to 1. The
models are selected so that they are nested, that is, every model with i parameters
can be expressed in models with j parameters if j > i. The popular models F81,
HKY85, TN93, TIM and GTR follow this model. In order to finalise the set of
models, we chose an extra model, labelled EVS in Figure 15.2, that obeys the
nesting constraint. To transition from model i to model i + 1 means that the
VS model utilised one more variable. If the variable is not used, it is effectively
sampled from the prior. In this section, we will have a look at what is involved
in adding the VS model to BEAST as a package.

Step 1: Write BEAST-object – develop code
To write a VS model, we go through the following procedure, which is quite
typical for developing models;

• select appropriate StateNodes to represent the space we want to sample. The
VS model is implemented using an integer parameter as substitution model
index, and a six dimensional real parameter containing the rate parameters.
• define a set of operators that efficiently sample the state space. There are two

D
RA

FT
14-7

-2
014

224 Putting it all together

operators on these parameters. Firstly, a random walk operator that increases
or decreased the dimension of the model. Secondly, a scale operator that selects
one of the rate parameters and changes its value.
• develop classes that ultimately influence the posterior. The VS substitution

model derives from GeneralSubstitutionModel which takes the count and
rate parameters as input. Further, a gamma prior is defined on the rate pa-
rameter. Also, we define a prior on the integer parameter so that we can
indicate less complex models are preferred over complex models.

Figure 15.3 shows how these elements are linked together.
When services of other classes are required that are package private, the class

should be placed in the package of these classes (or otherwise these could not
be used). But it is good practice to keep your package in its own namespace in
order to prevent class name clashes with other packages.

The only new class required for the VS model is a substitution model class that
derives from GeneralSubstitutionModel. We will have a look at some of the
more interesting areas of the implementation. It starts with a proper description.

1 @Descr ipt ion ("Substitution model for nucleotides that " +
2 "changes where the count input determines the " +
3 "number of parameters used in a hierarchy of models")

We need to add an extra input to indicate how many dimensions are in use.
1 pub l i c Input<IntegerParameter> countInput = new Input<

IntegerParameter>("count" , "model number used 0 = F81 , 1 =
HKY , 2 = TN93 , 3 = TIM , 4 = EVS , 5 and higher GTR (default
0)" , Va l idate .REQUIRED) ;

The initAndValidate() methods initialises some parameters, which is fairly
straightforward. Then, we override setupRelativeRates where the rates are
initialised in one large case-statement that switches based on the count input.

Model 1 Model 2 Model 3
F81 HKY85 TN93

A

1

1

1

@@
@@

@@
@ G

1~~
~~

~~
~

1

C
1

T

A

a

1

a

@@
@@

@@
@ G

a
~~

~~
~~

~
a

C
1

T

A

a

b

a

@@
@@

@@
@ G

a
~~

~~
~~

~
a

C
1

T
Model 4 Model 5 Model 6

TIM EVS GTR

A

a

b

c

@@
@@

@@
@ G

c
~~

~~
~~

~
a

C
1

T

A

a

b

c

@@
@@

@@
@ G

d~~
~~

~~
~

a

C
1

T

A

a

b

c

@@
@@

@@
@ G

d~~
~~

~~
~

e

C
1

T

Figure 15.2 The six substitution models and their parameters in the VS substitution
model

D
RA

FT
14-7

-2
014

15.3 Variable selection based substitution model package example 225

state

distribution

operator

logger

mcmc

stateNode

storeEvery=1000

state
lower=0

upper=5

value=5

Count

value=1
Rates

distribution
posterior

distribution
prior

x

distr

CountPrior

Exponential

count

x

distr

RBSprior

Gamma

distribution
likelihood

data

siteModel

branchRateModel

treeLikelihood
sequence

alignment

substModel
SiteModel

count

rates

frequencies

RB

data
freqs

clock.rate
StrictClock

value=1.0
clockRate

count

parameter

scaleFactor=0.5

weight=1.0

RateScaler

rates

count

weight=1.0

RBOperator

Figure 15.3 The VS model consists of substitution model, two parameters and two
operators on these parameters, a prior on the rates and count. The accompanying
BEAUti template contains a set of rules to connect its BEAST-objects to a larger
model, e.g., the rates to the rate prior, the loggers to the trace-log, etc.. For clarity,
the tree, sequences and loggers are omitted.

1 @Override
2 protec ted void se tupRe la t iveRates () {
3 switch (count . getValue ()) {
4 case 0 : // JC96
5 Arrays . f i l l (r e l a t i v eR a t e s , 1 . 0) ;
6 break ;
7 case 1 : // HKY
8 r e l a t i v e R a t e s [0] = m rate . getArrayValue (0) ; // A−>C
9 r e l a t i v e R a t e s [1] = 1 ; // A−>G

10 r e l a t i v e R a t e s [2] = m rate . getArrayValue (0) ; // A−>T
11 // see source code f o r more . . .
12 . . .
13 }
14 }

Since the substitution model is intended for nucleotide data only, we need to
add a method indicating that other data types are not supported. To this end,
we override the canHandleDataType method.

1 @Override
2 pub l i c boolean canHandleDataType (DataType dataType) throws

Exception {
3 i f (dataType i n s t a n c e o f Nuc leot ide) {
4 re turn true ;
5 }
6 throw new Exception ("Can only handle nucleotide data") ;
7 }

The super class takes care of everything else, including storing, restoring and
setting a flag for recalculating items. A small efficiency gain could be achieved

D
RA

FT
14-7

-2
014

226 Putting it all together

by letting the requiresRecalculation method test whether any of the relevant
rates changed, which is left as exercise to the reader.

Step 2: Test the model
Unfortunately, models require testing. There are various model testing strategies;

• Unit tests to ensure the code is correct.
• Prior sampling to ensure operators work correctly and priors do not interfere

with each other.
• Integration testing where we sample data from the prior, then run an MCMC

analysis with the model to ensure the model can indeed be recovered.

For unit testing of BEAST-objects, JUnit-tests are the de facto standard
for Java programs. There are some general tests in BEAST you might want
to use for checking that a BEAST-object is properly written. There is the
DocumentationTest for testing whether description annotations and input tip
texts are up to scratch and XMLElementNameTest to check that input names are
not accidentally chosen to be reserved names, since using reserved names can
lead to unexpected and hard to find bugs. For some reason, the name ‘name’
is a desirable name for an input, which unfortunately, is already reserved. The
ExampleXmlParsingTest tests whether example XML parses and runs for a lim-
ited number of samples. We found it useful to set up an automatic testing system,
which runs JUnit tests every time code is checked in and run integration tests
once a day.

In the case of the VS substitution model, we write tests to make sure the
model behaves the same as some known substitution models behave. This gives
us a test for F81, HKY, TN93, etc. Next, we create an example XML file, which
goes in the examples directory that goes with the package. This example file can
work as a blue-print for the BEAUti template to a large extend.

One important step that is regularly overlooked in testing a new model is
to see how the model behaves when sampling from the prior. The reason to
test this is that often subtle errors can occur that are not easily noticed when
sampling from a full model. For example, in the VS model we want to make
sure that every model is equally often sampled when there is a uniform prior on
the count. It is easy to come up with an operator that randomly increments or
decrements the count. But in case the count is zero, no decrement is possible.
If the operator would just increase the counter in this situation the distribution
over models would be lower for F81 than for HKY85, TN93, TIM, EVS and
GTR, which all would be equally likely. The random walk operator fails when
the count parameter is zero and it tries to decrease, which ensures all counts are
equally likely.

Another reason to sample from the prior is that priors may interact in unex-
pected and perhaps undesirable ways. Sampling from the prior makes it clear
whether there is any such interaction. For the VS model, we make sure that the

D
RA

FT
14-7

-2
014

15.3 Variable selection based substitution model package example 227

count parameter is uniformly distributed from 0 to 5, and that the rate param-
eters all have the same mean as the prior over the rates, which is 1 in this case.

Integration testing is best done by using a simulator that generates data you
want to analyse and determine how well the model used for generating the data is
recovered by the model based on the new BEAST-objects. There is some support
in BEAST 2 for generating alignment data through the beast.app.SequenceSimulator
class, which provides methods to generate sequence alignments for a fixed tree
with various substitution models, site models and branch rate models. To run
it you need an XML specification which uses SequenceSimulator in the run
element. For more advanced simulation studies the MASTER package may be
of interest.

For the VS model, we want to sample sequence data from the model, and
use this data to recover the model in an MCMC analysis. For each of the six
substitution models, we can generate a random substitution model with rates
sampled from the prior used on the rates. Note that we sample from the prior
over the parameters to ensure the priors used are sensible. Then, we use the
sequence simulator to sample an alignment for each of the substitution models
with the sampled rates. Finally, we run an analysis with the VS model and check
how close the substitution model that is estimated is to the one used to generate
the data. Ideally, when sampling from the VS model with x parameters, we
obtain an estimate of x parameters when analysing the data. The proportion of
time the number of parameters is indeed estmated as x is a measure of how well
the model performs.

There is quite a complex work-flow involved in setting up such tests, and much
of this is repetitive since we want to run through the process multiple times. You
might find the BEASTShell package useful for this, as it was designed to help
with testing BEAST models.

Step 3: Write BEAUti template
Before writing the BEAUti template, you need to understand some of the basics
of BEAUti as outlined in Section 15.2. The VS model is a substitution model, this
model should be made available as choice in the site model panel whenever there
is a nucleotide partition. The complete code is available in the VSS package,
but here we highlight some of it. Since a BEAUti template is in BEAST XML
format, we start with a BEAST 2 header followed by the sub-template definition.

8 <subtemplate id=’VS’ c l a s s=’beast.evolution.substitutionmodel.
VS’ mainid=’VS.s:$(n)’

9 suppres s Inputs=’beast.evolution.
substitutionmodel.VS.eigenSystem ,...’>

Some inputs, like eigenSystem, should not show in BEAUti, which is marked
in this declaration. At its hearth, the template consists of a BEAST-XML
fragment specifying the model, its priors and operators, wrapped in a CDATA
section.

D
RA

FT
14-7

-2
014

228 Putting it all together

10 < ! [CDATA[
11 <substModel spec =’VS’ id =’VS. s : $(n) ’>
12 <count spec =’parameter . IntegerParameter ’ id =’VScount .

s : $(n) ’ va lue = ’5 ’ lower = ’0 ’ upper=’5’/>
13 <r a t e s spec =’parameter . RealParameter ’ id =’VSrates . s : $(

n) ’ va lue = ’1 ’ dimension = ’5 ’ lower = ’0.01 ’ upper
= ’100.0 ’/>

14 < f r e q u e n c i e s id =’ f r e q s . s : $(n) ’ spec =’ Frequencies ’>
15 <data i d r e f = ’$(n) ’/>
16 </f r e q u e n c i e s>
17 </substModel>
18

19 <d i s t r i b u t i o n id =’VSprior . s : $(n) ’ spec =’ beast . math .
d i s t r i b u t i o n s . Prior ’ x=’@VSrates . s : $(n) ’>

20 <d i s t r spec=”beast . math . d i s t r i b u t i o n s .Gamma” alpha
= ’0.2 ’ beta = ’5.0 ’/>

21 </d i s t r i b u t i o n>
22

23 <operator id =’VSOperator . s : $(n) ’ spec =’
IntRandomWalkOperator ’ weight=”9” windowSize = ’1 ’
parameter=’@VScount . s : $(n) ’/>

24 <operator id =’ VSra te s ca l e r . s : $(n) ’ spec =’ ScaleOperator ’
s c a l eF ac t o r =”0.5” weight=”9” parameter=”@VSrates . s : $(n)
”/>

25]]>

The remainder of the sub-template consists of BEAUti-connector rules, for
example for connecting the VScount-parameter to the state and the trace logger.

26 <connect srcID=’VScount.s:$(n)’ target ID=’state’
inputName=’stateNode ’ i f=’inlikelihood(VScount.s:$(n))’/>

27 <connect srcID=’VSrates.s:$(n)’ target ID=’state’
inputName=’stateNode ’ i f=’inlikelihood(VSrates.s:$(n))’/>

28 . . .

Step 4: Update build script to create package
Since a package is a zip-file that contains some bits and pieces (Section 15.1), it
is probably easiest to have a look at a build file for an existing package and copy
the relevant parts to your own build file.

Step 5: Publish package by link on website
The BEAST website has further instructions on how to publish the package so
that the package manager (accessible in BEAUti) can pick it up and install it
on user computers or computer clusters.

The page http://beast2.org/wiki/index.php/VSS_package has instruction
on how to install the complete package so you can inspect the code and BEAUti
template.

http://beast2.org/wiki/index.php/VSS_package

D
RA

FT
14-7

-2
014

15.4 Exercise 229

15.4 Exercise

Write an exciting new package for BEAST 2 and release it to the public!

D
RA

FT
14-7

-2
014

D
RA

FT
14-7

-2
014

Bibliography

Aldous, D (2001). “Stochastic models and descriptive statistics for phylogenetic
trees, from Yule to today”. In: Statistical Science 16, pp. 23–34 (pages 30, 40).

Alekseyenko, AV, CJ Lee, and MA Suchard (2008). “Wagner and Dollo: a stochas-
tic duet by composing two parsimonious solos”. In: Systematic biology 57.5,
pp. 772–784 (page 120).

Allen, LJ (2003). An introduction to stochastic processes with applications to
biology. Pearson Education New Jersey (page 13).

Amenta, N and J Klingner (2002). “Case study: Visualizing sets of evolutionary
trees”. In: Information Visualization, 2002. INFOVIS 2002. IEEE Symposium
on. IEEE, pp. 71–74 (page 167).

Anderson, RM and RM May (1991). Infectious diseases of humans: dynamics
and control. Oxford: Oxford University Press (page 35).

Arunapuram, P, I Edvardsson, M Golden, JWJ Anderson, A Novák, Z Sükösd,
and J Hein (2013). “StatAlign 2.0: combining statistical alignment with RNA
secondary structure prediction”. In: Bioinformatics (page 10).

Atarhouch, T, L Rüber, EG Gonzalez, EM Albert, M Rami, A Dakkak, and R
Zardoya (2006). “Signature of an early genetic bottleneck in a population of
Moroccan sardines (¡ i¿ Sardina pilchardus¡/i¿)”. In: Molecular Phylogenetics
and Evolution 39.2, pp. 373–383 (page 140).

Ayres, D, A Darling, D Zwickl, P Beerli, M Holder, P Lewis, JP Huelsenbeck,
F Ronquist, DL Swofford, MP Cummings, A Rambaut, and MA Suchard
(2012). “BEAGLE: a common application programming inferface and high-
performance computing library for statistical phylogenetics”. In: Syst Biol 61,
pp. 170–173 (page 120).

Baele, G, P Lemey, T Bedford, A Rambaut, MA Suchard, and AV Alekseyenko
(2012). “Improving the accuracy of demographic and molecular clock model
comparison while accommodating phylogenetic uncertainty”. In: Mol. Biol.
Evol. 29.9, pp. 2157–2167 (pages 143, 144).

Baele, G, P Lemey, and S Vansteelandt (2013). “Make the most of your samples:
Bayes factor estimators for high-dimensional models of sequence evolution”.
In: BMC bioinformatics 14.1, p. 85 (page 145).

Bahl, J, MC Lau, GJ Smith, D Vijaykrishna, SC Cary, DC Lacap, CK Lee, RT
Papke, KA Warren-Rhodes, FK Wong, et al. (2011). “Ancient origins deter-

D
RA

FT
14-7

-2
014

232 BIBLIOGRAPHY

mine global biogeography of hot and cold desert cyanobacteria”. In: Nature
Communications 2, p. 163 (page 99).

Bahlo, M and RC Griffiths (2000). “Inference from gene trees in a subdivided
population”. In: Theoretical Population Biology 57.2, pp. 79–95 (page 31).

Barnes, I, P Matheus, B Shapiro, D Jensen, and A Cooper (2002). “Dynamics
of Pleistocene population extinctions in Beringian brown bears”. In: Science
295, p. 2267 (page 31).

Barrett, M, MJ Donoghue, and E Sober (1991). “Against consensus”. In: Sys-
tematic Zoology 40.4, pp. 486–493 (page 168).

Barton, NH, J Kelleher, and AM Etheridge (2010a). “A new model for extinc-
tion and recolonization in two dimensions: quantifying phylogeography”. In:
Evolution 64.9, pp. 2701–15 (page 78).

Barton, NH, F Depaulis, and AM Etheridge (2002). “Neutral evolution in spa-
tially continuous populations”. In: Theor Popul Biol 61.1, pp. 31–48 (page 78).

Barton, NH, AM Etheridge, and A Veber (2010b). “A new model for evolution
in a spatial continuum”. In: Electronic Journal of Probability 15, pp. 162–216
(page 78).

Beaumont, MA, R Nielsen, C Robert, J Hey, O Gaggiotti, L Knowles, A Es-
toup, M Panchal, J Corander, and M Hickerson (2010). “In defence of model-
based inference in phylogeography”. In: Molecular Ecology 19.3, pp. 436–446
(page 72).

Bedford, T, S Cobey, P Beerli, and M Pascual (2010). “Global migration dy-
namics underlie evolution and persistence of human influenza A (H3N2)”. In:
PLoS Pathog 6.5, e1000918 (page 75).

Beerli, P and J Felsenstein (1999). “Maximum-likelihood estimation of migration
rates and effective population numbers in two populations using a coalescent
approach”. In: Genetics 152.2, p. 763 (pages 6, 31).

Beerli, P and J Felsenstein (2001). “Maximum likelihood estimation of a mi-
gration matrix and effective population sizes in n subpopulations by using a
coalescent approach.” eng. In: Proc Natl Acad Sci U S A 98.8, pp. 4563–4568
(pages 7, 31, 72, 75).

Beerli, P (2004). “Effect of unsampled populations on the estimation of popu-
lation sizes and migration rates between sampled populations”. In: Molecular
Ecology 13.4, pp. 827–836 (page 75).

– (2006). “Comparison of Bayesian and maximum-likelihood inference of popula-
tion genetic parameters.” eng. In: Bioinformatics 22.3, pp. 341–345 (page 15).

Belfiore, N, L Liu, and C Moritz (2008). “Multilocus phylogenetics of a rapid
radiation in the genus Thomomys (Rodentia: Geomyidae)”. In: Systematic
Biology 57.2, p. 294 (page 125).

Berger, JO and JM Bernardo (1992). “On the development of reference priors”.
In: Bayesian Statistics. Ed. by PD J.M. Bernardo J.O. Berger and A Smith.
Vol. 4. Oxford University Press, pp. 35–60 (pages 14, 15).

Berger, JO (2006). “The case for objective Bayesian analysis”. In: Bayesian Anal-
ysis 1.3, pp. 385–402 (page 19).

D
RA

FT
14-7

-2
014

BIBLIOGRAPHY 233

Biek, R, AJ Drummond, and M Poss (2006). “A virus reveals population struc-
ture and recent demographic history of its carnivore host”. In: Science 311.5760,
pp. 538–41 (pages 77, 139).

Biek, R, JC Henderson, LA Waller, CE Rupprecht, and LA Real (May 2007).
“A high-resolution genetic signature of demographic and spatial expansion in
epizootic rabies virus”. In: Proceedings of the National Academy of Sciences
104.19, pp. 7993 –7998 (page 76).

Bielejec, F, A Rambaut, MA Suchard, and P Lemey (2011). “SPREAD: spa-
tial phylogenetic reconstruction of evolutionary dynamics”. In: Bioinformatics
27.20, pp. 2910–2912 (page 141).

Bielejec, F, P Lemey, G Baele, A Rambaut, and MA Suchard (2014). “Inferring
heterogeneous evolutionary processes through time: from sequence substitu-
tion to phylogeography”. In: Systematic biology, syu015 (page 118).

Bloomquist, EW and MA Suchard (Jan. 2010). “Unifying Vertical and Nonver-
tical Evolution: A Stochastic ARG-based Framework”. In: Systematic Biology
59.1, pp. 27 –41 (pages 7, 10).

Bofkin, L and N Goldman (2007). “Variation in evolutionary processes at differ-
ent codon positions”. In: Mol Biol Evol 24.2, pp. 513–21 (page 104).

Bolstad, WM (2011). Understanding computational Bayesian statistics. Vol. 644.
Wiley (page 10).

Boni, MF, D Posada, and MW Feldman (2007). “An exact nonparametric method
for inferring mosaic structure in sequence triplets”. In: Genetics 176.2, pp. 1035–
1047 (page 101).

Bouckaert, RR (2010). “DensiTree: making sense of sets of phylogenetic trees”.
In: Bioinformatics 26.10, pp. 1372–1373 (pages 163, 172).

Bouckaert, RR and D Bryant (2012). “A rough guide to SNAPP”. In: Available
from BEAST 2 wiki (pages viii, 129).

Bouckaert, RR, P Lemey, M Dunn, SJ Greenhill, AV Alekseyenko, AJ Drum-
mond, RD Gray, MA Suchard, and QD Atkinson (2012). “Mapping the Origins
and Expansion of the Indo-European Language Family”. In: Science 337.6097,
pp. 957–960 (pages 59, 141).

Bouckaert, RR, M Alvarado-Mora, and Ja Rebello Pinho (2013). “Evolutionary
rates and HBV: issues of rate estimation with Bayesian molecular methods”.
In: Antiviral therapy (pages 59, 104, 153).

Bouckaert, RR, J Heled, D Kühnert, T Vaughan, CH Wu, D Xie, MA Suchard,
A Rambaut, and AJ Drummond (2014). “BEAST 2: a software platform
for Bayesian evolutionary analysis”. In: PLoS Comput Biol 10.4, e1003537
(page 17).

Bradley, RK, A Roberts, M Smoot, S Juvekar, J Do, C Dewey, I Holmes, and
L Pachter (2009). “Fast statistical alignment”. In: PLoS Comput Biol 5.5,
e1000392 (page 10).

Brooks, S and A Gelman (1998). “Assessing convergence of Markov chain Monte
Carlo algorithms”. In: Journal of Computational and Graphical Statistics 7,
pp. 434–455 (page 148).

D
RA

FT
14-7

-2
014

234 BIBLIOGRAPHY

Brooks, S, A Gelman, GL Jones, and XL Meng (2010). Handbook of Markov
Chain Monte Carlo. Chapman & Hall/CRC. (page 10).

Brown, JM (2014). “Predictive Approaches to Assessing the Fit of Evolutionary
Models”. In: Systematic biology 63.3, pp. 289–292 (page 145).

Bryant, D (2003). A classification of consensus methods for phylogenies. AMS,
pp. 163–184 (page 168).

Bryant, D and V Moulton (2004). “Neighbor-net: an agglomerative method for
the construction of phylogenetic networks”. In: Molecular biology and evolution
21.2, pp. 255–265 (page 166).

Bryant, D, RR Bouckaert, J Felsenstein, N Rosenberg, and A RoyChoudhury
(2012). “Inferring Species Trees Directly from Biallelic Genetic Markers: By-
passing Gene Trees in a Full Coalescent Analysis”. In: Mol. Biol. Evol. 29.8,
pp. 1917–1932 (pages 7, 120, 124, 128, 129).

Bunce, M, TH Worthy, T Ford, W Hoppitt, E Willerslev, AJ Drummond, and A
Cooper (2003). “Extreme reversed sexual size dimorphism in the extinct New
Zealand moa Dinornis.” eng. In: Nature 425.6954, pp. 172–175 (page 136).

Burnham, K and D Anderson (2002). Model selection and multimodel inference:
a practical information-theoretic approach. Springer Verlag (page 32).

Camargo, A, LJ Avila, M Morando, and JW Sites (2012). “Accuracy and pre-
cision of species trees: effects of locus, individual, and base pair sampling on
inference of species trees in lizards of the Liolaemus darwinii group (Squamata,
Liolaemidae)”. In: Systematic biology 61.2, pp. 272–288 (page 125).

Campos, PF et al. (2010). “Ancient DNA analyses exclude humans as the driving
force behind late Pleistocene musk ox (Ovibos moschatus) population dynam-
ics”. In: Proceedings of the National Academy of Sciences 107.12, pp. 5675–
5680. eprint: http://www.pnas.org/content/107/12/5675.full.pdf+html
(page 140).

Cavalli-Sforza, L and A Edwards (1967). “Phylogenetic analysis: models and
estimation procedures”. In: American Journal of Human Genetics 19, pp. 233–
257 (pages 23, 24).

Chaves, JA and TB Smith (2011). “Evolutionary patterns of diversification in
the Andean hummingbird genus Adelomyia”. In: Molecular Phylogenetics and
Evolution 60.2, pp. 207 –218 (page 173).

Chung, Y and C Ané (2011). “Comparing two Bayesian methods for gene tree/species
tree reconstruction: simulations with incomplete lineage sorting and horizontal
gene transfer”. In: Systematic biology 60.3, pp. 261–275 (page 125).

Coop, G and RC Griffiths (2004). “Ancestral inference on gene trees under se-
lection”. In: Theor Popul Biol 66.3, pp. 219–32 (pages 72, 80).

Cox, J, J Ingersoll, and S Ross (1985). “A Theory of the Term Structure of
Interest Rates”. In: Econometrica 53, pp. 385–407 (page 130).

Currie, TE, SJ Greenhill, R Mace, TE Currie, SJ Greenhill, and R Mace (2010).
“Is horizontal transmission really a problem for phylogenetic comparative
methods? A simulation study using continuous cultural traits”. In: Philo-

http://www.pnas.org/content/107/12/5675.full.pdf+html

D
RA

FT
14-7

-2
014

BIBLIOGRAPHY 235

sophical Transactions of the Royal Society B: Biological Sciences 365.1559,
pp. 3903–3912 (page 101).

Debruyne, R, G Chu, CE King, K Bos, M Kuch, C Schwarz, P Szpak, DR Gröcke,
P Matheus, G Zazula, et al. (2008). “Out of America: ancient DNA evidence
for a new world origin of late quaternary woolly mammoths”. In: Current
Biology 18.17, pp. 1320–1326 (page 140).

Degnan, JH and NA Rosenberg (2006). “Discordance of species trees with their
most likely gene trees”. In: PLoS genetics 2.5, e68 (page 121).

Dincă, V, VA Lukhtanov, G Talavera, and R Vila (2011). “Unexpected layers of
cryptic diversity in wood white Leptidea butterflies”. In: Nature Communica-
tions 2.324 (pages 126, 173).

Drummond, AJ and AG Rodrigo (2000). “Reconstructing genealogies of serial
samples under the assumption of a molecular clock using serial-sample UP-
GMA”. In: Molecular Biology and Evolution 17.12, pp. 1807–1815 (page 31).

Drummond, AJ and MA Suchard (2010). “Bayesian random local clocks, or one
rate to rule them all”. In: BMC biology 8.1, p. 114 (pages 66–68, 87, 154).

Drummond, AJ, R Forsberg, and AG Rodrigo (2001). “The inference of stepwise
changes in substitution rates using serial sequence samples.” eng. In: Mol Biol
Evol 18.7, pp. 1365–1371 (page 31).

Drummond, AJ, OG Pybus, A Rambaut, R Forsberg, and AG Rodrigo (2003).
“Measurably evolving populations”. In: Trends in Ecology & Evolution 18,
pp. 481–488 (pages 8, 69, 135).

Drummond, AJ, A Rambaut, B Shapiro, and OG Pybus (May 2005). “Bayesian
coalescent inference of past population dynamics from molecular sequences”.
In: Mol Biol Evol 22.5, pp. 1185–92 (pages 32, 136, 140).

Drummond, AJ (2002). “Computational Statistical Inference for Molecular Evo-
lution and Population Genetics”. PhD thesis. University of Auckland (page 110).

Drummond, AJ and A Rambaut (2007). “BEAST: Bayesian evolutionary anal-
ysis by sampling trees”. In: BMC Evol Biol 7, p. 214 (pages 15, 78, 83).

Drummond, AJ, GK Nicholls, AG Rodrigo, and W Solomon (July 2002). “Es-
timating mutation parameters, population history and genealogy simultane-
ously from temporally spaced sequence data”. In: Genetics 161.3, pp. 1307–20
(pages 6, 15, 31, 33, 34, 69, 78, 114).

Drummond, AJ, SYW Ho, MJ Phillips, and A Rambaut (2006). “Relaxed phy-
logenetics and dating with confidence”. In: PLoS Biol 4.5, e88 (pages 65, 66,
77, 152).

Drummond, AJ, MA Suchard, D Xie, and A Rambaut (2012). “Bayesian phylo-
genetics with BEAUti and the BEAST 1.7”. In: Mol Biol Evol 29.8, pp. 1969–
73 (pages 17, 78).

Duffy, S, LA Shackelton, and EC Holmes (2008). “Rates of evolutionary change in
viruses: patterns and determinants”. In: Nature Reviews Genetics 9.4, pp. 267–
276 (pages 19, 160).

D
RA

FT
14-7

-2
014

236 BIBLIOGRAPHY

Durbin, R, SR Eddy, A Krogh, and G Mitchison (1998). Biological sequence anal-
ysis: probabilistic models of proteins and nucleic acids. Cambridge university
press (page 9).

Edwards, A (1970). “Estimation of the branch points of a branching diffusion
process (with discussion)”. In: Journal of the Royal Statistical Society, Series
B 32, pp. 155–174 (page 38).

Edwards, A and L Cavalli-Sforza (1965). “A method for cluster analysis”. In:
Biometrics, pp. 362–375 (page 6).

Edwards, CTT, EC Holmes, DJ Wilson, RP Viscidi, EJ Abrams, RE Phillips,
and AJ Drummond (2006). “Population genetic estimation of the loss of ge-
netic diversity during horizontal transmission of HIV-1”. In: BMC Evol Biol
6, p. 28 (page 32).

Etienne, R, B Haegeman, T Stadler, T Aze, P Pearson, A Purvis, and A Phillimore
(2012). “Diversity-dependence brings molecular phylogenies closer to agree-
ment with the fossil record”. In: Proc. Roy. Soc. B doi: 10.1098/rspb.2011.1439
(page 40).

Ewing, G and AG Rodrigo (May 2006a). “Coalescent-Based Estimation of Pop-
ulation Parameters When the Number of Demes Changes Over Time”. In:
Molecular Biology and Evolution 23.5, pp. 988–996 (pages 7, 75).

– (2006b). “Estimating Population Parameters using the Structured Serial Co-
alescent with Bayesian MCMC Inference when some Demes are Hidden”. In:
Evolutionary Bioinformatics 2. PMID: 19455215 PMCID: 2674663, pp. 227–
235 (page 75).

Ewing, G, G Nicholls, and AG Rodrigo (Dec. 2004). “Using Temporally Spaced
Sequences to Simultaneously Estimate Migration Rates, Mutation Rate and
Population Sizes in Measurably Evolving Populations”. In: Genetics 168.4,
pp. 2407–2420 (pages 7, 15, 72, 74, 75).

Faria, NR, MA Suchard, A Abecasis, JD Sousa, N Ndembi, I Bonfim, RJ Ca-
macho, AM Vandamme, and P Lemey (2012). “Phylodynamics of the HIV-1
CRF02 AG clade in Cameroon”. In: Infection, Genetics and Evolution 12.2,
pp. 453 –460 (page 141).

Fearnhead, P and P Donnelly (2001). “Estimating recombination rates from
population genetic data”. In: Genetics 159.3, p. 1299 (page 31).

Fearnhead, P and C Sherlock (2006). “An exact Gibbs sampler for the Markov-
modulated Poisson process”. In: Journal of the Royal Statistical Society: Series
B (Statistical Methodology) 68.5, pp. 767–784 (page 75).

Felsenstein, J (1981). “Evolutionary trees from DNA sequences: a maximum like-
lihood approach”. In: Journal of Molecular Evolution 17, pp. 368–376 (pages 6,
51, 55, 57, 72, 73).

Felsenstein, J (1988). “Phylogenies from molecular sequences: inference and re-
liability”. In: Annual Review of Genetics 22, pp. 521–565 (page 31).

– (1992). “Estimating effective population size from samples of sequences: in-
efficiency of pairwise and segregating sites as compared to phylogenetic esti-
mates”. In: Genetical Research 59, pp. 139–147 (pages 29, 31).

D
RA

FT
14-7

-2
014

BIBLIOGRAPHY 237

Felsenstein, J (2001). “The troubled growth of statistical phylogenetics”. In: Syst
Biol 50.4, pp. 465–7 (pages 6, 18, 71).

Felsenstein, J (2004). Inferring Phylogenies. Sunderland, MA: Sinauer Asso-
ciates, Inc. (pages 14, 102).

Felsenstein, J (1985). “Phylogenies and the Comparative Method”. In: The Amer-
ican Naturalist 125.1, pp. 1–15 (page 77).

– (2006). “Accuracy of coalescent likelihood estimates: do we need more sites,
more sequences, or more loci?” In: Mol Biol Evol 23.3, pp. 691–700 (pages 7,
138).

Finlay, EK, C Gaillard, S Vahidi, S Mirhoseini, H Jianlin, X Qi, M El-Barody, J
Baird, B Healy, and DG Bradley (2007). “Bayesian inference of population ex-
pansions in domestic bovines”. In: Biology Letters 3.4, pp. 449–452 (page 140).

Firth, C, A Kitchen, B Shapiro, MA Suchard, EC Holmes, and A Rambaut
(Apr. 2010). “Using Time-Structured Data to Estimate Evolutionary Rates of
Double-Stranded DNA Viruses”. In: Mol Biol Evol, msq088 (page 161).

Fisher, R (1930). Genetical Theory of Natural Selection. Oxford: Clarendon Press
(page 28).

FitzJohn, RG, WP Maddison, and SP Otto (2009). “Estimating trait-dependent
speciation and extinction rates from incompletely resolved phylogenies”. In:
Syst. Biol. 58.6, p. 595 (page 40).

FitzJohn, R (2010). “Quantitative traits and diversification”. In: Systematic bi-
ology 59.6, pp. 619–633 (page 40).

Ford, CB, PL Lin, MR Chase, RR Shah, O Iartchouk, J Galagan, N Mohaideen,
TR Ioerger, JC Sacchettini, M Lipsitch, JL Flynn, and SM Fortune (2011).
“Use of whole genome sequencing to estimate the mutation rate of Mycobac-
terium tuberculosis during latent infection”. In: Nat Genet 43.5, pp. 482–6
(page 69).

Fraser, C et al. (2009). “Pandemic potential of a strain of influenza A (H1N1):
early findings”. In: Science 324.5934, pp. 1557–61 (page 139).

Fu, Y (1994). “A phylogenetic estimator of effective population size or mutation
rate”. In: Genetics 136.2, p. 685 (page 29).

Gavryushkina, A, D Welch, and AJ Drummond (2013). “Recursive Algorithms
for Phylogenetic Tree Counting”. In: Algorithms in Molecular Biology submit-
ted (pages 24, 43).

Gavryushkina, A, D Welch, T Stadler, and AJ Drummond (2014). “Bayesian
inference of sampled ancestor trees for epidemiology and fossil calibration”.
In: arXiv preprint arXiv:1406.4573 (pages 43, 70).

Gelman, A and DB Rubin (1992). “A single series from the Gibbs sampler pro-
vides a false sense of security”. In: Bayesian Statistics 4. Ed. by J Bernardo,
JO Berger, JO Dawid, and AFM Smith. Oxford, UK: Oxford University Press,
pp. 625–631 (page 148).

Gelman, A, GO Roberts, and WR Gilks (1996). “Efficient Metropolis jumping
rules”. In: Bayesian Statistics. Ed. by JM Bernardo, JO Berger, AP Dawid, and
AFM Smith. Vol. 5. Oxford: Oxford University Press, pp. 599–608 (page 93).

D
RA

FT
14-7

-2
014

238 BIBLIOGRAPHY

Gelman, A, J Carlin, H Stern, and D Rubin (2004). Bayesian Data Analysis.
Second. New York, NY: Chapman & Hall/CRC (pages 10, 148).

Geman, S and D Geman (1984). “Stochastic relaxation, Gibbs distribution, and
the Bayesian restoration of images”. In: IEEE Transactions on Pattern Anal-
ysis and Machine intelligence 6, pp. 721–741 (page 17).

Gernhard, T (Aug. 2008). “The conditioned reconstructed process”. In: J Theor
Biol 253.4, pp. 769–78 (page 39).

Geweke, J (1992). “Evaluating the accuracy of sampling-based approaches to
the calculation of posterior moments”. In: Bayesian Statistics 4. Ed. by J
Bernardo, JO Berger, JO Dawid, and AFM Smith. Oxford, UK: Oxford Uni-
versity Press, pp. 169–193 (page 148).

Gill, MS, P Lemey, NR Faria, A Rambaut, B Shapiro, and MA Suchard (Mar.
2013). “Improving Bayesian population dynamics inference: a coalescent-based
model for multiple loci”. In: Mol Biol Evol 30.3, pp. 713–24 (page 32).

Gillespie, JH (Nov. 2001). “Is the population size of a species relevant to its
evolution?” In: Evolution 55.11, pp. 2161–9 (page 28).

Goldman, N and Z Yang (1994). “A codon-based model of nucleotide substitution
for protein-coding DNA sequences”. In: Molecular Biology and Evolution 11,
pp. 725–736 (page 52).

Goldstein, M (2006). “Subjective Bayesian analysis: principles and practice”. In:
Bayesian Analysis 1.3, pp. 403–420 (page 19).

Graham, M and J Kennedy (2010). “A survey of multiple tree visualisation”. In:
Information Visualization 9.4, pp. 235–252 (page 163).

Gray, RD and QD Atkinson (2003). “Language-tree divergence times support
the Anatolian theory of Indo-European origin”. In: Nature 426, pp. 435–439
(page 59).

Gray, RR, AJ Tatem, et al. (2011). “Testing spatiotemporal hypothesis of bacte-
rial evolution using methicillin-resistant Staphylococcus aureus ST239 genome-
wide data within a bayesian framework”. In: Mol Biol Evol 28.5, pp. 1593–603
(page 78).

Gray, RD, AJ Drummond, and SJ Greenhill (2009). “Language phylogenies re-
veal expansion pulses and pauses in Pacific settlement”. In: Science 323.5913,
pp. 479–483 (page 59).

Green, P (1995). “Reversible jump Markov chain Monte Carlo computation and
Bayesian model determination”. In: Biometrika 82, pp. 711–732 (pages 17, 18).

Green, P, N Hjort, and S Richardson (2003). Highly Structured Stochastic Sys-
tems. Oxford, UK: Oxford University Press (page 17).

Greenhill, SJ, AJ Drummond, and RD Gray (2010). “How accurate and robust
are the phylogenetic estimates of Austronesian language relationships?” In:
PloS one 5.3, e9573 (page 101).

Grenfell, BT, OG Pybus, JR Gog, JLN Wood, JM Daly, JA Mumford, and EC
Holmes (2004). “Unifying the epidemiological and evolutionary dynamics of
pathogens”. In: Science 303.5656, pp. 327–32 (page 78).

D
RA

FT
14-7

-2
014

BIBLIOGRAPHY 239

Griffiths, RC (1989). “Genealogical-tree probabilities in the infinitely-many-site
model”. In: Journal of mathematical biology 27.6, pp. 667–680 (page 31).

Griffiths, RC and P Marjoram (1996). “Ancestral inference from samples of
DNA sequences with recombination”. In: Journal of Computational Biology
3.4, pp. 479–502 (pages 10, 31).

Griffiths, RC and S Tavaré (1994). “Sampling theory for neutral alleles in a
varying environment”. In: Philosophical Transactions of the Royal Society B:
Biological Sciences 344, pp. 403–410 (pages 29, 31).

Grummer, JA, RW Bryson, and TW Reeder (2014). “Species delimitation using
Bayes factors: simulations and application to the Sceloporus scalaris species
group (Squamata: Phrynosomatidae)”. In: Systematic biology 63.2, pp. 119–
133 (page 128).

Gu, X, YX Fu, and WH Li (1995). “Maximum likelihood estimation of the het-
erogeneity of substitution rate among nucleotide sites”. In: Mol Biol Evol 12.4,
pp. 546–57 (page 56).

Hailer, F, VE Kutschera, BM Hallström, D Klassert, SR Fain, JA Leonard, U
Arnason, and A Janke (2012). “Nuclear Genomic Sequences Reveal that Polar
Bears Are an Old and Distinct Bear Lineage”. In: Science 336.6079, pp. 344–
347. eprint: http://www.sciencemag.org/content/336/6079/344.full.
pdf (page 126).

Harding, E (1971). “The probabilities of rooted tree-shapes generated by random
bifurcation”. In: Advances in Applied Probability 3, pp. 44–77 (page 36).

Harvey, PH and MD Pagel (1991). The comparative method in evolutionary bi-
ology. Oxford: Oxford University Press (page 77).

Hasegawa, M, H Kishino, and T Yano (1985). “Dating the human-ape splitting by
a molecular clock of mitochondrial DNA”. In: Journal of Molecular Evolution
22, pp. 160–174 (page 51).

Hastings, W (1970). “Monte Carlo sampling methods using Markov chains and
their applications”. In: Biometrika 57, pp. 97–109 (pages 15, 16, 19, 31).

He, M et al. (2013). “Emergence and global spread of epidemic healthcare-
associated Clostridium difficile”. In: Nature Genetics 45.1, pp. 109–113 (page 140).

Heath, TA, JP Huelsenbeck, and T Stadler (2013). “The Fossilized Birth-Death
Process: A Coherent Model of Fossil Calibration for Divergence Time Estima-
tion”. In: arXiv preprint arXiv:1310.2968 (page 70).

Heidelberger, P and PD Welch (1983). “Simulation run length control in the
presence of an initial transient”. In: Operations Research 31.6, pp. 1109–1144
(page 148).

Hein, J, M Schierup, and C Wiuf (2004). Gene genealogies, variation and evolu-
tion: a primer in coalescent theory. Oxford university press (page 25).

Heled, J and AJ Drummond (2008). “Bayesian inference of population size his-
tory from multiple loci”. In: BMC Evolutionary Biology 8.1, p. 289 (pages 7,
18, 32, 114, 136, 137).

Heled, J and RR Bouckaert (2013). “Looking for Trees in the Forest: Summary
Tree from Posterior Samples”. In: submitted (pages 167–169, 171).

http://www.sciencemag.org/content/336/6079/344.full.pdf
http://www.sciencemag.org/content/336/6079/344.full.pdf

D
RA

FT
14-7

-2
014

240 BIBLIOGRAPHY

Heled, J and AJ Drummond (2010). “Bayesian inference of species trees from
multilocus data”. In: Mol Biol Evol 27.3, pp. 570–80 (pages 7, 104, 121, 124,
125, 128).

– (2012). “Calibrated tree priors for relaxed phylogenetics and divergence time
estimation”. In: Syst Biol 61.1, pp. 138–49 (pages 69, 88, 116, 133).

– (2013). “Calibrated birth-death phylogenetic time-tree priors for Bayesian in-
ference”. In: arXiv preprint arXiv:1311.4921 (page 69).

Hey, J (2010). “Isolation with migration models for more than two populations”.
In: Mol Biol Evol 27.4, pp. 905–20 (page 7).

Hillis, D, T Heath, and K St John (2005). “Analysis and Visualization of Tree
Space”. In: Systematic Biology 54.3, pp. 471–82 (page 167).

Ho, SYW, MJ Phillips, AJ Drummond, and A Cooper (2005). “Accuracy of
rate estimation using relaxed-clock models with a critical focus on the early
metazoan radiation”. In: Molecular Biology and Evolution 22, pp. 1355–1363
(page 152).

Ho, SY and B Shapiro (2011). “Skyline-plot methods for estimating demographic
history from nucleotide sequences”. In: Molecular Ecology Resources 11.3,
pp. 423–434 (page 101).

Hoffman, J, S Grant, J Forcada, and C Phillips (2011). “Bayesian inference of
a historical bottleneck in a heavily exploited marine mammal”. In: Molecular
Ecology 20.19, pp. 3989–4008 (page 140).

Höhna, S and AJ Drummond (Jan. 2012). “Guided tree topology proposals for
Bayesian phylogenetic inference”. In: Syst Biol 61.1, pp. 1–11 (pages 163, 166,
169).

Höhna, S, T Stadler, F Ronquist, and T Britton (2011). “Inferring speciation
and extinction rates under different sampling schemes”. In: Mol Biol Evol
28.9, pp. 2577–89 (page 102).

Holder, MT, PO Lewis, DL Swofford, and B Larget (2005). “Hastings ratio of
the LOCAL proposal used in Bayesian phylogenetics”. In: Systematic Biology
54, pp. 961–965 (page 17).

Holder, MT, J Sukumaran, and PO Lewis (2008). “A justification for reporting
the majority-rule consensus tree in Bayesian phylogenetics”. In: Systematic
biology 57.5, pp. 814–821 (page 168).

Holmes, EC, LQ Zhang, P Simmonds, AS Rogers, and AJ Leigh Brown (1993).
“Molecular investigation of human immunodeficiency virus (HIV) infection in
a patient of an HIV-infected surgeon”. In: The Journal of infectious diseases
167.6, pp. 1411–1414 (page 31).

Holmes, EC and BT Grenfell (Oct. 2009). “Discovering the Phylodynamics of
RNA Viruses”. In: PLoS Comput Biol 5.10, e1000505 (page 78).

Hudson, RR (Dec. 1987). “Estimating the recombination parameter of a finite
population model without selection”. In: Genet Res 50.3, pp. 245–50 (page 29).

Hudson, RR (1990). “Gene genealogies and the coalescent process”. In: Oxford
surveys in evolutionary biology. Ed. by D Futuyma and J Antonovics. Vol. 7.
Oxford University Press, Oxford, pp. 1 –44 (pages 28, 29, 74, 75).

D
RA

FT
14-7

-2
014

BIBLIOGRAPHY 241

Hudson, RR and NL Kaplan (Sept. 1985). “Statistical properties of the number
of recombination events in the history of a sample of DNA sequences”. In:
Genetics 111.1, pp. 147–64 (page 29).

Huelsenbeck, JP and F Ronquist (2001). “MrBayes: Bayesian inference of phy-
logenetic trees”. In: Bioinformatics 17, pp. 754–755 (page 15).

Huelsenbeck, JP, B Larget, and DL Swofford (2000). “A compound poisson
process for relaxing the molecular clock”. In: Genetics 154, pp. 1879–1892
(page 65).

Huelsenbeck, JP, F Ronquist, R Nielsen, and JP Bollback (Dec. 2001). “Bayesian
Inference of Phylogeny and Its Impact on Evolutionary Biology”. In: Science
294.5550, pp. 2310–2314 (page 6).

Huelsenbeck, JP, B Larget, and ME Alfaro (June 2004). “Bayesian Phyloge-
netic Model Selection Using Reversible Jump Markov Chain Monte Carlo”.
In: Molecular Biology and Evolution 21.6, pp. 1123–1133 (page 59).

Huson, DH and D Bryant (2006). “Application of Phylogenetic Networks in
Evolutionary Studies”. In: Mol. Biol. Evol. 23.2, pp. 254–267 (pages 101, 166).

Jackman, T, A Larson, KD Queiroz, and J Losos (1999). “Phylogenetic rela-
tionships and tempo of early diversification in Anolis lizards”. In: Systematic
Biology 48.2, pp. 254–285 (page 164).

Jaynes, ET (2003). Probability theory: The logic of science. Cambridge university
press (pages 10, 19).

Jeffreys, H (1946). “An invariant form for the prior probability in estimation
problems”. In: Proceedings of the Royal Society of London. Series A. Mathe-
matical and Physical Sciences 186.1007, pp. 453–461 (page 15).

– (1961). Theory of Probability, 1st edition. London: Oxford University Press
(page 15).

Jenkins, GM, A Rambaut, OG Pybus, and EC Holmes (Feb. 2002). “Rates of
Molecular Evolution in RNA Viruses: A Quantitative Phylogenetic Analysis”.
In: Journal of Molecular Evolution 54.2, pp. 156–165 (page 69).

Jukes, T and C Cantor (1969). “Evolution of protein molecules”. In: Mammaliam
Protein Metabolism. Ed. by H Munro. New York: Academic Press, pp. 21–132
(pages 45, 48).

Kass, R and A Raftery (1995). “Bayes factors”. In: Journal of the American
Statistical Association 90, pp. 773–795 (page 143).

Kass, RE, BP Carlin, A Gelman, and RM Neal (1998). “Markov chain monte
carlo in practice: A roundtable discussion”. In: The American Statistician 52.2,
pp. 93–100 (page 148).

Keeling, MJ and P Rohani (2008). Modeling infectious diseases in humans and
animals. Princeton: Princeton University Press (page 35).

Kendall, DG (1948). “On the generalized “birth-and-death” process”. In: Ann.
Math. Statist. 19.1, pp. 1–15 (page 36).

– (1949). “Stochastic processes and population growth”. In: Journal of the Royal
Statistical Society. Series B (Methodological) 11.2, pp. 230–282 (page 76).

D
RA

FT
14-7

-2
014

242 BIBLIOGRAPHY

Kimura, M (1980). “A simple model for estimating evolutionary rates of base
substitutions through comparative studies of nucleotide sequences”. In: Jour-
nal of Molecular Evolution 16, pp. 111–120 (page 49).

Kingman, J (1982). “The coalescent”. In: Stochastic processes and their applica-
tions 13.3, pp. 235–248 (pages 6, 28).

Kishino, H, JL Thorne, and WJ Bruno (2001). “Performance of a Divergence
Time Estimation Method under a Probabilistic Model of Rate Evolution”. In:
Molecular Biology and Evolution 18.3, pp. 352–361 (page 65).

Knuth, D (1997). The Art of Computer Programming. Vol. 2: Seminumerical
algorithms. Addison-Wesley (page 118).

Kouyos, RD, CL Althaus, and S Bonhoeffer (Dec. 2006). “Stochastic or deter-
ministic: what is the effective population size of HIV-1?” In: Trends Microbiol
14.12, pp. 507–11 (page 28).

Kubatko, LS and JH Degnan (2007). “Inconsistency of phylogenetic estimates
from concatenated data under coalescence”. In: Systematic Biology 56.1, pp. 17–
24 (page 121).

Kuhner, MK, J Yamato, and J Felsenstein (1995). “Estimating effective popu-
lation size and mutation rate from sequence data using Metropolis-Hastings
sampling”. In: Genetics 140, pp. 1421–1430 (pages 6, 31).

– (1998). “Maximum likelihood estimation of population growth rates based on
the coalescent”. In: Genetics 149, pp. 429–434 (pages 6, 31, 114).

– (2000). “Maximum likelihood estimation of recombination rates from popula-
tion data”. In: Genetics 156.3, p. 1393 (pages 7, 10, 31).

Kuhner, MK (2006). “LAMARC 2.0: maximum likelihood and Bayesian estima-
tion of population parameters”. In: Bioinformatics 22.6, pp. 768–70 (pages 10,
15).

Kühnert, D, CH Wu, and AJ Drummond (2011). “Phylogenetic and epidemic
modeling of rapidly evolving infectious diseases”. In: Infect Genet Evol (pages 8,
69, 78).

Kühnert, D, T Stadler, TG Vaughan, and AJ Drummond (2014). “Simultane-
ous reconstruction of evolutionary history and epidemiological dynamics from
viral sequences with the birth-death SIR model”. In: J R Soc Interface 11.94,
p. 20131106 (pages 41, 78).

Kuo, L and B Mallick (1998). “Variable selection for regression models”. In:
Sankhya B 60, pp. 65–81 (page 18).

Lakner, C, P van der Mark, JP Huelsenbeck, B Larget, and F Ronquist (Feb.
2008). “Efficiency of Markov chain Monte Carlo tree proposals in Bayesian
phylogenetics”. In: Syst Biol 57.1, pp. 86–103 (page 163).

Lambert, DM, PA Ritchie, CD Millar, B Holland, AJ Drummond, and C Baroni
(2002). “Rates of evolution in ancient DNA from Adelie penguins.” eng. In:
Science 295.5563, pp. 2270–2273 (pages 31, 69, 136).

Laplace, P (1812). Theorie Analytique des Probabilites. Courcier, Paris (page 14).

D
RA

FT
14-7

-2
014

BIBLIOGRAPHY 243

Larget, B and D Simon (1999). “Markov chain Monte Carlo algorithms for the
Bayesian analysis of phylogenetic trees”. In: Molecular Biology and Evolution
16, pp. 750–759 (page 15).

Larget, B (2013). “The estimation of tree posterior probabilities using conditional
clade probability distributions”. In: Systematic Biology (pages 166, 169).

Larkin, M et al. (2007). “Clustal W and Clustal X version 2.0”. In: Bioinformatics
23, pp. 2947–2948 (page 9).

Lartillot, N, T Lepage, and S Blanquart (Sept. 2009). “PhyloBayes 3: a Bayesian
software package for phylogenetic reconstruction and molecular dating”. In:
Bioinformatics 25.17, pp. 2286–8 (page 15).

Leaché, AD and MK Fujita (2010). “Bayesian species delimitation in West African
forest geckos (Hemidactylus fasciatus)”. In: Proc R Soc B 277, pp. 3071–3077
(page 126).

Leaché, AD and B Rannala (2011). “The accuracy of species tree estimation
under simulation: a comparison of methods”. In: Systematic Biology 60.2,
pp. 126–137 (page 124).

Leaché, AD, MK Fujita, VN Minin, and RR Bouckaert (2014). “Species De-
limitation using Genome-Wide SNP Data”. In: Systematic biology, syu018
(page 132).

Lemey, P, OG Pybus, B Wang, NK Saksena, M Salemi, and A Vandamme (May
2003). “Tracing the origin and history of the HIV-2 epidemic”. In: Proceedings
of the National Academy of Sciences of the United States of America 100.11,
pp. 6588 –6592 (page 32).

Lemey, P, OG Pybus, A Rambaut, AJ Drummond, DL Robertson, P Roques,
M Worobey, and AM Vandamme (July 2004). “The molecular population
genetics of HIV-1 group O”. In: Genetics 167.3, pp. 1059–68 (pages 32, 160).

Lemey, P, A Rambaut, AJ Drummond, and MA Suchard (2009a). “Bayesian
phylogeography finds its roots”. In: PLoS Comput Biol 5.9, e1000520 (pages 18,
72, 74, 76, 79, 140).

Lemey, P, MA Suchard, and A Rambaut (2009b). “Reconstructing the initial
global spread of a human influenza pandemic: a Bayesian spatial-temporal
model for the global spread of H1N1pdm”. In: PLoS Currents. Influenza.
PMID: 20029613, RRN1031 (pages 74, 136, 140).

Lemey, P, A Rambaut, JJ Welch, and MA Suchard (2010). “Phylogeography
takes a relaxed random walk in continuous space and time”. In: Mol Biol Evol
(pages 76, 77, 140).

Leonard, J, R Wayne, J Wheeler, R Valadez, S Guillen, and C Vila (2002).
“Ancient DNA evidence for Old World origin of New World dogs”. In: Science
298.5598, p. 1613 (page 31).

Lepage, T, D Bryant, H Philippe, and N Lartillot (2007). “A General Comparison
of Relaxed Molecular Clock Models”. In: Mol Biol Evol 24.12, pp. 2669–2680.
eprint: http://mbe.oxfordjournals.org/cgi/reprint/24/12/2669.pdf
(page 66).

http://mbe.oxfordjournals.org/cgi/reprint/24/12/2669.pdf

D
RA

FT
14-7

-2
014

244 BIBLIOGRAPHY

Leventhal, GE, H Guenthard, S Bonhoeffer, and T Stadler (2013). “Using an
epidemiological model for phylogenetic inference reveals density-dependence
in HIV transmission”. In: Mol Biol Evol in press (pages 35, 41, 78).

Levinson, G and GA Gutman (1987). “High frequencies of short frameshifts in
poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli
K-12”. In: Nucleic Acids Research 15.13, pp. 5323–5338 (page 53).

Lewis, PO (2001). “A likelihood approach to estimating phylogeny from dis-
crete morphological character data”. In: Systematic biology 50.6, pp. 913–925
(page 60).

Lewis, PO, MT Holder, and KE Holsinger (2005). “Polytomies and Bayesian
phylogenetic inference.” eng. In: Syst Biol 54.2, pp. 241–253 (page 15).

Li, S, D Pearl, and H Doss (2000). “Phylogenetic tree construction using Markov
chain Monte Carlo”. In: Journal of the American Statistical Association 95,
pp. 493–508 (page 15).

Li, WLS and AJ Drummond (2012). “Model averaging and bayes factor calcula-
tion of relaxed molecular clocks in bayesian phylogenetics”. In: Mol Biol Evol
29.2, pp. 751–61 (pages 66, 153).

Liu, L (2008). “BEST: Bayesian estimation of species trees under the coalescent
model”. In: Bioinformatics 24.21, pp. 2542–2543 (page 124).

Liu, L, DK Pearl, RT Brumfield, and SV Edwards (2008). “Estimating species
trees using multiple-allele DNA sequence data”. In: Evolution 62.8, pp. 2080–
91 (page 7).

Liu, L, L Yu, L Kubatko, DK Pearl, and SV Edwards (2009a). “Coalescent
methods for estimating phylogenetic trees”. In: Mol Phylogenet Evol 53.1,
pp. 320–8 (page 7).

Liu, L, L Yu, DK Pearl, and SV Edwards (2009b). “Estimating species phyloge-
nies using coalescence times among sequences”. In: Syst Biol 58.5, pp. 468–77
(page 7).

Loreille, O, L Orlando, M Patou-Mathis, M Philippe, P Taberlet, and C Hänni
(2001). “Ancient DNA analysis reveals divergence of the cave bear, Ursus
spelaeus, and brown bear, Ursus arctos, lineages”. In: Current Biology 11.3,
pp. 200–203 (page 31).

Lunter, G, I Miklos, AJ Drummond, JL Jensen, and J Hein (2005). “Bayesian
coestimation of phylogeny and sequence alignment”. In: BMC Bioinformatics
6, p. 83 (pages 6, 10, 103).

MacKay, DJ (2003). Information theory, inference and learning algorithms. Cambridge
university press (page 10).

Maddison, DR and WP Maddison (2005). “MacClade 4.08”. In: Massachusetts:
Sinauer Associates, Sunderland (page 71).

Maddison, WP (2007). “Estimating a Binary Character’s Effect on Speciation
and Extinction”. In: Systematic Biology 56.5, pp. 701–710 (pages 40, 72).

Matschiner, M and RR Bouckaert (2013). “A rough guide to CladeAge”. In:
Available via BEAST 2 wiki (pages 69, 116).

D
RA

FT
14-7

-2
014

BIBLIOGRAPHY 245

Matsumoto, M and T Nishimura (1998). “Mersenne Twister: A 623-Dimensionally
Equidistributed Uniform Pseudo-Random Number Generator”. In: ACM Trans-
actions on Modeling and Computer Simulation 8.1, pp. 3–30 (page 118).

Mau, B and M Newton (1997). “Phylogenetic inference for binary data on den-
dograms using Markov chain Monte Carlo”. In: Journal of Computational and
Graphical Statistics 6, pp. 122–131 (page 15).

Mau, B, MA Newton, and B Larget (Mar. 1999). “Bayesian phylogenetic infer-
ence via Markov chain Monte Carlo methods”. In: Biometrics 55.1, pp. 1–12
(pages 15, 165).

McCormack, JE, J Heled, KS Delaney, AT Peterson, and LL Knowles (2011).
“Calibrating Divergence Times On Species Trees Versus Gene Trees: Implica-
tions For Speciation History Of Aphelocoma Jays”. In: Evolution 65.1, pp. 184–
202 (page 173).

Meredith, R, J Janečka, J Gatesy, O Ryder, C Fisher, E Teeling, A Goodbla, E
Eizirik, T Simão, T Stadler, et al. (2011). “Impacts of the Cretaceous Terres-
trial Revolution and KPg Extinction on Mammal Diversification”. In: Science
334.6055, pp. 521–524 (page 39).

Metropolis, N, A Rosenbluth, M Rosenbluth, A Teller, and E Teller (1953).
“Equations of state calculations by fast computing machines”. In: Journal of
Chemistry and Physics 21, pp. 1087–1092 (pages 15, 19, 31).

Minin, VN, EW Bloomquist, and MA Suchard (2008). “Smooth Skyride through
a Rough Skyline: Bayesian Coalescent-Based Inference of Population Dynam-
ics”. In: Molecular Biology and Evolution 25.7, pp. 1459–1471. eprint: http://
mbe.oxfordjournals.org/content/25/7/1459.full.pdf+html (page 32).

Molina, J, M Sikora, N Garud, JM Flowers, S Rubinstein, A Reynolds, P Huang,
S Jackson, BA Schaal, CD Bustamante, AR Boyko, and MD Purugganan
(2011). “Molecular evidence for a single evolutionary origin of domesticated
rice”. In: Proceedings of the National Academy of Sciences 108.20, pp. 8351–
8356. eprint: http://www.pnas.org/content/108/20/8351.full.pdf+html
(page 126).

Mollentze, N, LH Nel, S Townsend, K le Roux, K Hampson, DT Haydon, and
S Soubeyrand (2014). “A Bayesian approach for inferring the dynamics of
partially observed endemic infectious diseases from space-time-genetic data”.
In: Proc Biol Sci 281.1782, p. 20133251 (page 78).

Monjane, AL, GW Harkins, DP Martin, P Lemey, P Lefeuvre, DN Shepherd, S
Oluwafemi, M Simuyandi, I Zinga, EK Komba, et al. (2011). “Reconstructing
the history of Maize streak virus strain A dispersal to reveal diversification
hot spots and its origin in southern Africa”. In: Journal of virology 85.18,
pp. 9623–9636 (page 141).

Mooers, A and S Heard (1997). “Inferring evolutionary process from phylogenetic
tree shape”. In: The Quarterly Review of Biology 72, pp. 31–54 (page 112).

Moran, PAP (1958). “Random processes in genetics”. In: Mathematical Proceed-
ings of the Cambridge Philosophical Society. Vol. 54. Cambridge Univ Press,
pp. 60–71 (page 28).

http://mbe.oxfordjournals.org/content/25/7/1459.full.pdf+html
http://mbe.oxfordjournals.org/content/25/7/1459.full.pdf+html
http://www.pnas.org/content/108/20/8351.full.pdf+html

D
RA

FT
14-7

-2
014

246 BIBLIOGRAPHY

Moran, PAP et al. (1962). “The statistical processes of evolutionary theory.” In:
The statistical processes of evolutionary theory. (Page 28).

Morlon, H, T Parsons, and J Plotkin (2011). “Reconciling molecular phylogenies
with the fossil record”. In: Proc. Nat. Acad. Sci. 108.39, pp. 16327–16332
(page 39).

Mourier, T, SY Ho, MTP Gilbert, E Willerslev, and L Orlando (2012). “Statis-
tical guidelines for detecting past population shifts using ancient DNA”. In:
Molecular biology and evolution 29.9, pp. 2241–2251 (page 101).

Muse, S and B Gaut (1994). “A likelihood approach for comparing synonymous
and nonsynonymous nucleotide substitution rates, with applications to the
chloroplast genome”. In: Molecular Biology and Evolution 11, pp. 715–725
(page 52).

Mutreja, A, DW Kim, NR Thomson, TR Connor, JH Lee, S Kariuki, NJ Croucher,
SY Choi, SR Harris, M Lebens, et al. (2011). “Evidence for several waves of
global transmission in the seventh cholera pandemic”. In: Nature 477.7365,
pp. 462–465 (page 136).

Nagalingum, N, C Marshall, T Quental, H Rai, D Little, and S Mathews (2011).
“Recent synchronous radiation of a living fossil”. In: Science 334.6057, pp. 796–
799 (page 99).

Nee, SC (2001). “Inferring speciation rates from phylogenies”. In: Evolution 55.4,
pp. 661–8 (page 112).

Nee, SC, EC Holmes, RM May, and PH Harvey (1994a). “Extinction rates can
be estimated from molecular phylogenies”. In: Philos Trans R Soc Lond B Biol
Sci 344.1307, pp. 77–82 (page 112).

Nee, SC, RM May, and PH Harvey (1994b). “The reconstructed evolution-
ary process”. In: Philos. Trans. Roy. Soc. London Ser. B 344, pp. 305–311
(page 39).

Nee, SC, EC Holmes, A Rambaut, and PH Harvey (1995). “Inferring population
history from molecular phylogenies”. In: Philosophical Transactions: Biological
Sciences 349.1327, pp. 25–31 (page 29).

Newton, M and A Raftery (1994). “Approximate Bayesian inference with the
weighted likelihood bootstrap”. In: Journal of the Royal Statistical Society,
Series B 56, pp. 3–48 (page 143).

Nicholls, GK and RD Gray (2006). “Quantifying uncertainty in a stochastic
model of vocabulary evolution”. In: Phylogenetic methods and the prehistory
of languages, pp. 161–171 (page 59).

– (2008). “Dated ancestral trees from binary trait data and their application to
the diversification of languages”. In: Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 70.3, pp. 545–566 (page 120).

Notredame, C, DG Higgins, and J Heringa (2000). “T-coffee: a novel method
for fast and accurate multiple sequence alignment”. In: Journal of Molecular
Biology 302.1, pp. 205 –217 (page 10).

D
RA

FT
14-7

-2
014

BIBLIOGRAPHY 247

Novák, A, I Miklós, R Lyngsø, and J Hein (2008). “StatAlign: an extendable
software package for joint Bayesian estimation of alignments and evolutionary
trees”. In: Bioinformatics 24.20, pp. 2403–4 (pages 10, 103).

Nylander, JAA, JC Wilgenbusch, DL Warren, and DL Swofford (2008). “AWTY
(are we there yet?): a system for graphical exploration of MCMC convergence
in Bayesian phylogenetics”. In: Bioinformatics 24.4, pp. 581–583 (page 163).

Ohta, T and M Kimura (1973). “A model of mutation appropriate to estimate
the number of electrophoretically detectable alleles in a finite population”. In:
Genetics 22.2, pp. 201–204 (page 53).

Opgen-Rhein, R, L Fahrmeir, and K Strimmer (2005). “Inference of demographic
history from genealogical trees using reversible jump Markov chain Monte
Carlo”. In: BMC Evolutionary Biology 5.1, p. 6 (page 32).

Pagel, MD and A Meade (2004). “A phylogenetic mixture model for detecting
pattern-heterogeneity in gene sequence or character-state data”. In: Syst Biol
53.4, pp. 571–81 (page 15).

Palacios, JA and VN Minin (2012). “Integrated nested Laplace approximation for
Bayesian nonparametric phylodynamics.” In: Proc. 28th Conf. on Uncertainty
in Artificial Intelligence. Ed. by N de Freitas and K Murphy. AUAI Press,
pp. 726–735 (page 33).

– (2013). “Gaussian process-based Bayesian nonparametric inference of popula-
tion trajectories from gene genealogies”. In: Biometrics in press (page 33).

Palmer, D, J Frater, R Phillips, AR McLean, and G McVean (2013). “Integrating
genealogical and dynamical modelling to infer escape and reversion rates in
HIV epitopes”. In: Proc Biol Sci 280.1762, p. 20130696 (pages 72, 78).

Pamilo, P and M Nei (Sept. 1988). “Relationships between gene trees and species
trees”. In: Mol Biol Evol 5.5, pp. 568–83 (pages 41, 121).

Penny, D, BJ McComish, MA Charleston, and MD Hendy (2001). “Mathematical
elegance with biochemical realism: the covarion model of molecular evolution”.
In: Journal of Molecular Evolution 53.6, pp. 711–723 (page 59).

Pereira, L, F Freitas, V Fernandes, JB Pereira, MD Costa, S Costa, V Máximo,
V Macaulay, R Rocha, and DC Samuels (2009). “The diversity present in
5140 human mitochondrial genomes”. In: Am J Hum Genet 84.5, pp. 628–40
(page 105).

Posada, D (2008). “jModelTest: phylogenetic model averaging”. In: Molecular
biology and evolution 25.7, pp. 1253–1256 (page 153).

Posada, D and KA Crandall (1998). “Modeltest: testing the model of DNA sub-
stitution.” In: Bioinformatics 14.9, pp. 817–818 (page 153).

Procter, JB, J Thompson, I Letunic, C Creevey, F Jossinet, and GJ Barton
(2010). “Visualization of multiple alignments, phylogenies and gene family
evolution”. In: Nature methods 7, S16–S25 (page 163).

Pybus, OG and A Rambaut (Oct. 2002). “GENIE: estimating demographic
history from molecular phylogenies”. In: Bioinformatics 18.10, pp. 1404–5
(page 29).

D
RA

FT
14-7

-2
014

248 BIBLIOGRAPHY

Pybus, OG, A Rambaut, and PH Harvey (2000). “An integrated framework for
the inference of viral population history from reconstructed genealogies”. In:
Genetics 155, pp. 1429–1437 (pages 29, 32).

Pybus, OG, MA Charleston, S Gupta, A Rambaut, EC Holmes, and PH Harvey
(2001). “The epidemic behavior of the hepatitis C virus.” eng. In: Science
292.5525, pp. 2323–2325 (page 29).

Pybus, OG, AJ Drummond, T Nakano, BH Robertson, and A Rambaut (Mar.
2003). “The epidemiology and iatrogenic transmission of hepatitis C virus in
Egypt: a Bayesian coalescent approach.” eng. In: Mol Biol Evol 20.3, pp. 381–
387 (pages 29, 32, 110).

Pybus, OG, MA Suchard, P Lemey, FJ Bernardin, A Rambaut, FW Crawford,
RR Gray, N Arinaminpathy, SL Stramer, MP Busch, et al. (2012). “Unify-
ing the spatial epidemiology and molecular evolution of emerging epidemics”.
In: Proceedings of the National Academy of Sciences 109.37, pp. 15066–15071
(page 141).

Pybus, OG and A Rambaut (2009). “Evolutionary analysis of the dynamics of
viral infectious disease”. In: Nat Rev Genet 10.8, pp. 540–50 (pages 8, 78).

Pybus, OG et al. (Jan. 2009). “Genetic history of hepatitis C virus in East Asia”.
In: J Virol 83.2, pp. 1071–82 (page 33).

Pyron, RA (2011). “Divergence time estimation using fossils as terminal taxa
and the origins of Lissamphibia”. In: Systematic Biology, syr047 (page 60).

Rabosky, D (2007). “Likelihood methods for detecting temporal shifts in diver-
sification rates”. In: Evolution 60.6, pp. 1152–1164 (page 40).

Raftery, A, M Newton, J Satagopan, and P Krivitsky (2007). “Estimating the
integrated likelihood via posterior simulation using the harmonic mean iden-
tity”. In: Bayesian Statistics. Ed. by BJ Bernardo JM Bayarri MJ. Oxford:
Oxford University Press, pp. 1–45 (page 144).

Raftery, AE and SM Lewis (1992). “[Practical Markov Chain Monte Carlo]: Com-
ment: One Long Run with Diagnostics: Implementation Strategies for Markov
Chain Monte Carlo”. In: Statistical Science 7.4, pp. 493–497 (page 148).

Rambaut, A (2000). “Estimating the rate of molecular evolution: incorporating
non-contemporaneous sequences into maximum likelihood phylogenies”. In:
Bioinformatics 16, pp. 395–399 (pages 31, 69).

Rambaut, A (2010). Path-O-Gen: Temporal Signal Investigation Tool. Version
1.3 (page 157).

Rannala, B and Z Yang (1996). “Probability distribution of molecular evolution-
ary trees: a new method of phylogenetic inference”. In: Journal of Molecular
Evolution 43, pp. 304–311 (page 169).

Rannala, B and Z Yang (2007). “Inferring Speciation Times under an Episodic
Molecular Clock”. In: Systematic Biology 56.3, pp. 453–466 (pages 65, 66).

Rasmussen, DA, O Ratmann, and K Koelle (2011). “Inference for nonlinear epi-
demiological models using genealogies and time series”. In: PLoS Comp Biol
7.8, e1002136 (page 78).

D
RA

FT
14-7

-2
014

BIBLIOGRAPHY 249

Redelings, BD and MA Suchard (2005). “Joint Bayesian Estimation of Alignment
and Phylogeny”. In: Systematic Biology 54.3, pp. 401–418 (pages 6, 10, 103).

Redelings, BD and MA Suchard (2007). “Incorporating indel information into
phylogeny estimation for rapidly emerging pathogens”. In: BMC Evol Biol 7,
p. 40 (page 103).

Reid, NM, SM Hird, JM Brown, TA Pelletier, JD McVay, JD Satler, and BC
Carstens (2013). “Poor fit to the multispecies coalescent is widely detectable
in empirical data”. In: Systematic biology, syt057 (page 121).

Richard, GF and F Pâques (2000). “Mini- and microsatellite expansions: the
recombination connection”. In: EMBO Report 1.2, pp. 122–126 (page 53).

Robinson, D and LR Foulds (1981). “Comparison of phylogenetic trees”. In:
Mathematical Biosciences 53.1, pp. 131–147 (page 169).

Rodrigo, AG and J Felsenstein (1999). “The evolution of HIV”. In: The Johns
Hopkins University Press. Chap. Coalescent approaches to HIV population
genetics, pp. 233–272 (pages 31, 33).

Rodrigo, AG, EG Shpaer, EL Delwart, AK Iversen, MV Gallo, J Brojatsch, MS
Hirsch, BD Walker, and JI Mullins (Mar. 1999). “Coalescent estimates of HIV-
1 generation time in vivo”. In: Proc Natl Acad Sci U S A 96.5, pp. 2187–91
(page 31).

Rodrigue, N, H Philippe, and N Lartillot (2008). “Uniformization for sampling
realizations of Markov processes: applications to Bayesian implementations of
codon substitution models”. In: Bioinformatics 24.1, pp. 56–62 (page 75).

Ronquist, F and JP Huelsenbeck (Aug. 2003). “MrBayes 3: Bayesian phylogenetic
inference under mixed models.” eng. In: Bioinformatics 19.12, pp. 1572–1574
(page 22).

Ronquist, F, M Teslenko, et al. (2012). “MrBayes 3.2: efficient Bayesian phylo-
genetic inference and model choice across a large model space”. In: Syst Biol
61.3, pp. 539–42 (page 78).

Ronquist, F, S Klopfstein, L Vilhelmsen, S Schulmeister, DL Murray, and AP
Rasnitsyn (2012). “A total-evidence approach to dating with fossils, applied
to the early radiation of the hymenoptera”. In: Syst Biol 61.6, pp. 973–99
(pages 69, 70).

Rosenberg, MS (2009). Sequence alignment: methods, models, concepts, and strate-
gies. Univ of California Press (page 9).

Rosenberg, M, S Subramanian, and S Kumar (2003). “Patterns of transitional
mutation biases within and among mammalian genomes”. In: Mol Biol Evol
20.6, pp. 988–93 (pages 88, 105).

Roure, B, D Baurain, and H Philippe (2013). “Impact of Missing Data on Phylo-
genies Inferred from Empirical Phylogenomic Data Sets”. In: Molecular biology
and evolution 30.1, pp. 197–214 (page 104).

Sanmart́ın, I, P van der Mark, and F Ronquist (2008). “Inferring dispersal: a
Bayesian approach to phylogeny-based island biogeography, with special ref-
erence to the Canary Islands”. In: Journal of Biogeography 35.3, pp. 428–449
(page 71).

D
RA

FT
14-7

-2
014

250 BIBLIOGRAPHY

Sarich, VM and AC Wilson (1967). “Immunological time scale for hominid evo-
lution”. In: Science 158, pp. 1200–1203 (pages 61, 63).

Sato, A, C O’hUigin, F Figueroa, PR Grant, BR Grant, H Tichy, and J Klein
(1999). “Phylogeny of Darwin’s finches as revealed by mtDNA sequences”. In:
Proc. Natl. Acad. Sci 96, pp. 5101–5106 (page 122).

Seo, TK, JL Thorne, M Hasegawa, and H Kishino (Jan. 2002). “A viral sampling
design for testing the molecular clock and for estimating evolutionary rates and
divergence times”. In: Bioinformatics 18.1, pp. 115 –123 (page 7).

Shankarappa, R, JB Margolick, SJ Gange, AG Rodrigo, D Upchurch, H Farzade-
gan, P Gupta, CR Rinaldo, GH Learn, X He, XL Huang, and JI Mullins (1999).
“Consistent viral evolutionary changes associated with the disease progression
of human immunodeficiency virus type 1 infection”. In: Journal of Virology
73, pp. 10489–10502 (page 31).

Shapiro, B et al. (2004). “Rise and fall of the Beringian steppe bison.” eng. In:
Science 306.5701, pp. 1561–1565 (pages 69, 136).

Shapiro, B, A Rambaut, and AJ Drummond (2006). “Choosing appropriate sub-
stitution models for the phylogenetic analysis of protein-coding sequences.”
eng. In: Mol Biol Evol 23.1, pp. 7–9 (pages 104, 108, 154).

Silva, E de, N Ferguson, and C Fraser (2012). “Inferring pandemic growth rates
from sequence data”. In: J R Soc Interface 9.73, pp. 1797–808 (pages 101,
139).

Sjödin, P, I Kaj, S Krone, M Lascoux, and M Nordborg (Feb. 2005). “On the
meaning and existence of an effective population size”. In: Genetics 169.2,
pp. 1061–70 (page 28).

Slatkin, M (Oct. 1991). “Inbreeding coefficients and coalescence times”. In: Genet
Res 58.2, pp. 167–75 (page 29).

Slatkin, M and WP Maddison (Nov. 1989). “A Cladistic Measure of Gene Flow
Inferred from the Phylogenies of Alleles”. In: Genetics 123.3, pp. 603–613
(page 71).

Smith, BJ (2007). “boa: an R package for MCMC output convergence assessment
and posterior inference”. In: Journal of Statistical Software 21.11, pp. 1–37
(page 148).

Smith, GP (1976). “Evolution of repeated DNA sequences by unequal crossover”.
In: Science 191.4227, pp. 528–535 (page 53).

Smith, SA and MJ Donoghue (2008). “Rates of molecular evolution are linked
to life history in flowering plants”. In: Science 322.5898, pp. 86–89 (page 99).

Stadler, T (2013a). “Recovering speciation and extinction dynamics based on
phylogenies”. In: Journal of evolutionary biology 26.6, pp. 1203–1219 (page 40).

Stadler, T (Nov. 2009). “On incomplete sampling under birth-death models and
connections to the sampling-based coalescent”. In: J Theor Biol 261.1, pp. 58–
66 (pages 39, 112).

– (Dec. 2010). “Sampling-through-time in birth-death trees”. In: J Theor Biol
267.3, pp. 396–404 (pages 37, 40, 78).

D
RA

FT
14-7

-2
014

BIBLIOGRAPHY 251

– (2011). “Mammalian phylogeny reveals recent diversification rate shifts”. In:
Proc. Nat. Acad. Sci. 108.15, pp. 6187–6192 (page 39).

– (2013b). “How can we improve accuracy of macroevolutionary rate estimates?”
In: Systematic biology 62.2, pp. 321–329 (pages 37, 38).

Stadler, T and S Bonhoeffer (2013). “Uncovering epidemiological dynamics in
heterogeneous host populations using phylogenetic methods”. In: Philos Trans
R Soc Lond B Biol Sci 368.1614, p. 20120198 (pages 41, 74, 76, 78).

Stadler, T et al. (2012). “Estimating the basic reproductive number from viral
sequence data”. In: Molecular Biology and Evolution 29, pp. 347–357 (page 40).

Stadler, T, D Kühnert, S Bonhoeffer, and AJ Drummond (2013). “Birth-death
skyline plot reveals temporal changes of epidemic spread in HIV and HCV”.
In: Proc. Nat. Acad. Sci. 110.1 (pages 40, 78, 113, 136, 138).

Steel, M (2005). “Should phylogenetic models be trying to ’fit an elephant’?” In:
Trends in Genetics 21.6, pp. 307–309 (page 157).

Stephens, M and P Donnelly (2000). “Inference in molecular population genet-
ics”. In: Journal of the Royal Statistical Society. Series B, Statistical Method-
ology 62.4, pp. 605–655 (page 31).

Stewart, WJ (1994). Introduction to the numerical solution of Markov chains.
Vol. 41. Princeton University Press Princeton (pages 13, 46).

Stockham, C, LS Wang, and T Warnow (2002). “Statistically based postpro-
cessing of phylogenetic analysis by clustering”. In: Bioinformatics 18.suppl 1,
S285–S293 (page 169).

Strimmer, K and OG Pybus (Dec. 2001). “Exploring the demographic history of
DNA sequences using the generalized skyline plot”. In: Mol Biol Evol 18.12,
pp. 2298–305 (page 32).

Suchard, MA and BD Redelings (2006). “BAli-Phy: simultaneous Bayesian in-
ference of alignment and phylogeny”. In: Bioinformatics 22.16, pp. 2047–2048
(pages 10, 103).

Suchard, MA, RE Weiss, and JS Sinsheimer (2001). “Bayesian selection of continuous-
time Markov chain evolutionary models”. In: Molecular Biology and Evolution
18, pp. 1001–1013 (page 155).

– (2003). “Testing a molecular clock without an outgroup: derivations of induced
priors on branch length restrictions in a Bayesian framework”. In: Systematic
Biology 52, pp. 48–54 (page 103).

Suchard, MA and A Rambaut (June 2009). “Many-core algorithms for statistical
phylogenetics”. In: Bioinformatics 25.11, pp. 1370–1376 (pages 74, 120).

Sullivan, J and DL Swofford (2001). “Should we use model-based methods for
phylogenetic inference when we known that assumptions about among-site
rate variation and nucleotide substitution pattern are violated?” In: Systematic
Biology 50, pp. 723–729 (page 56).

Sullivan, J, DL Swofford, and GJ Naylor (1999). “The effect of taxon sampling
on estimating rate heterogeneity parameters of maximum-likelihood models”.
In: Molecular Biology and Evolution 16, pp. 1347–1356 (page 56).

D
RA

FT
14-7

-2
014

252 BIBLIOGRAPHY

Swofford, DL (2003). “PAUP*: phylogenetic analysis using parsimony (* and
other methods). Version 4”. In: Massachusetts: Sinauer Associates, Sunderland
(page 71).

Tajima, F (Oct. 1983). “Evolutionary relationship of DNA sequences in finite
populations”. In: Genetics 105.2, pp. 437–60 (pages 29, 43).

– (Sept. 1989). “DNA polymorphism in a subdivided population: the expected
number of segregating sites in the two-subpopulation model”. In: Genetics
123.1, pp. 229–40 (page 29).

Takahata, N (Aug. 1989). “Gene genealogy in three related populations: con-
sistency probability between gene and population trees”. In: Genetics 122.4,
pp. 957–66 (page 29).

Teixeira, S, EA Serrão, and S Arnaud-Haond (2012). “Panmixia in a Fragmented
and Unstable Environment: The Hydrothermal Shrimp Rimicaris exoculata
Disperses Extensively along the Mid-Atlantic Ridge”. In: PloS one 7.6, e38521
(page 140).

Thorne, JL, H Kishino, and IS Painter (1998). “Estimating the rate of evolution
of the rate of molecular evolution”. In: Molecular Biology and Evolution 15.12,
pp. 1647–1657 (page 65).

Thorne, JL and H Kishino (2002 Oct). “Divergence time and evolutionary rate es-
timation with multilocus data.” eng. In: Syst Biol 51.5, pp. 689–702 (page 65).

Vaughan, TG, D Kühnert, A Popinga, D Welch, and AJ Drummond (2014). “Ef-
ficient Bayesian inference under the structured coalescent”. In: Bioinformatics,
btu201 (pages 15, 74, 75).

Vaughan, TG and AJ Drummond (June 2013). “A stochastic simulator of birth-
death master equations with application to phylodynamics”. In: Mol Biol Evol
30.6, pp. 1480–93 (pages 43, 145).

Vijaykrishna, D, GJ Smith, OG Pybus, H Zhu, S Bhatt, LL Poon, S Riley, J
Bahl, SK Ma, CL Cheung, et al. (2011). “Long-term evolution and transmis-
sion dynamics of swine influenza A virus”. In: Nature 473.7348, pp. 519–522
(page 136).

Volz, EM (2012). “Complex population dynamics and the coalescent under neu-
trality”. In: Genetics 190.1, pp. 187–201 (pages 35, 36, 72, 78).

Volz, EM, SL Kosakovsky Pond, MJ Ward, AJ Leigh Brown, and SDW Frost
(2009). “Phylodynamics of infectious disease epidemics”. In: Genetics 183.4,
pp. 1421–30 (page 78).

Volz, EM, K Koelle, and T Bedford (2013). “Viral phylodynamics”. In: PLoS
Comput Biol 9.3, e1002947 (pages 8, 78).

Waddell, P and D Penny (1996). “Evolutionary trees of apes and humans from
DNA sequences”. In: Handbook of symbolic evolution. Ed. by AJ Lock and CR
Peters. Clarendon Press, Oxford., pp. 53–73 (page 56).

Wakeley, J and O Sargsyan (Jan. 2009). “Extensions of the coalescent effective
population size”. In: Genetics 181.1, pp. 341–5 (page 28).

D
RA

FT
14-7

-2
014

BIBLIOGRAPHY 253

Wallace, R, H HoDac, R Lathrop, and W Fitch (2007). “A statistical phylo-
geography of influenza A H5N1”. In: Proceedings of the National Academy of
Sciences 104.11, p. 4473 (page 71).

Welch, D (2011). “Is Network Clustering Detectable in Transmission Trees?” In:
Viruses 3.6, pp. 659–676 (page 78).

Whidden, C, I Matsen, and A Frederick (2014). “Quantifying MCMC Explo-
ration of Phylogenetic Tree Space”. In: arXiv preprint arXiv:1405.2120 (page 163).

Wiens, JJ and DS Moen (2008). “Missing data and the accuracy of Bayesian
phylogenetics”. In: Journal of Systematics and Evolution 46.3, 307ïĳŊ314
(page 104).

Wilson, AC and VM Sarich (1969). “A molecular time scale for human evolu-
tion”. In: Proc Natl Acad Sci U S A 63.4, pp. 1088–93 (page 63).

Wilson, IJ and DJ Balding (1998). “Genealogical inference from microsatellite
data”. In: Genetics 150.1, pp. 499–510 (page 15).

Wolinsky, S, B Korber, A Neumann, M Daniels, K Kunstman, A Whetsell, M
Furtado, Y Cao, D Ho, and J Safrit (1996). “Adaptive evolution of human
immunodeficiency virus type-1 during the natural course of infection”. In:
Science 272, pp. 537–542 (page 31).

Wong, KM, MA Suchard, and JP Huelsenbeck (2008). “Alignment uncertainty
and genomic analysis”. In: Science 319.5862, pp. 473–476 (page 10).

Worobey, M, M Gemmel, DE Teuwen, T Haselkorn, K Kunstman, M Bunce, J
Muyembe, JM Kabongo, RM Kalengayi, EV Marck, MTP Gilbert, and SM
Wolinsky (Oct. 2008). “Direct evidence of extensive diversity of HIV-1 in Kin-
shasa by 1960”. In: Nature 455.7213, pp. 661–664 (page 32).

Worobey, M et al. (Sept. 2010). “Island Biogeography Reveals the Deep History
of SIV”. In: Science 329.5998, p. 1487 (page 136).

Wright, S (1931). “Evolution in Mendelian populations”. In: Genetics 16.2, pp. 97–
159 (page 28).

Wu, CH and AJ Drummond (2011). “Joint inference of microsatellite mutation
models, population history and genealogies using transdimensional Markov
Chain Monte Carlo”. In: Genetics 188.1, pp. 151–64 (pages 18, 54).

Wu, CH, MA Suchard, and AJ Drummond (2013). “Bayesian selection of nu-
cleotide substitution models and their site assignments”. In: Mol Biol Evol
30.3, pp. 669–88 (pages 18, 59, 104, 153).

Xie, W, P Lewis, Y Fan, L Kuo, and M Chen (2011). “Improving marginal
likelihood estimation for Bayesian phylogenetic model selection”. In: Syst Biol
60, pp. 150–160 (page 144).

Yang, Z and B Rannala (1997). “Bayesian phylogenetic inference using DNA
sequences: a Markov chain Monte Carlo method”. In: Molecular Biology and
Evolution 14.7, pp. 717–724 (pages 15, 38, 112).

– (2006). “Bayesian estimation of species divergence times under a molecular
clock using multiple fossil calibrations with soft bounds”. In: Molecular Biology
and Evolution 23, pp. 212–226 (page 69).

D
RA

FT
14-7

-2
014

254 BIBLIOGRAPHY

Yang, Z and A Yoder (1999). “Estimation of the transition/transversion rate bias
and species sampling”. In: Journal of Molecular Evolution 48 (3), pp. 274–283
(page 105).

Yang, Z (1994). “Maximum likelihood phylogenetic estimation from DNA se-
quences with variable rates over sites: Approximate methods”. In: Journal of
Molecular Evolution 39.3, pp. 306–314 (pages 55, 107).

Yang, Z, N Goldman, and A Friday (1995). “Maximum likelihood trees from DNA
sequences: a peculiar statistical estimation problem”. In: Systematic Biology
44.3, pp. 384–399 (page 153).

Yoder, A and Z Yang (2000). “Estimation of Primate Speciation Dates Using
Local Molecular Clocks”. In: Molecular Biology and Evolution 17, pp. 1081–
1090 (page 66).

Ypma, RJF, WM van Ballegooijen, and J Wallinga (Nov. 2013). “Relating phylo-
genetic trees to transmission trees of infectious disease outbreaks”. In: Genetics
195.3, pp. 1055–62 (page 43).

Yu, Y, C Than, JH Degnan, and L Nakhleh (2011). “Coalescent histories on phy-
logenetic networks and detection of hybridization despite incomplete lineage
sorting”. In: Systematic Biology 60.2, pp. 138–149 (page 125).

Yule, G (1924). “A mathematical theory of evolution based on the conclusions of
Dr. J.C. Willis”. In: Philosophical Transactions of the Royal Society of London,
Series B 213, pp. 21–87 (pages 36, 38).

D
RA

FT
14-7

-2
014

List of authors

Aldous, D, 30, 40
Alekseyenko, AV, 120
Allen, LJ, 13
Amenta, N, 167
Anderson, D, 32
Anderson, RM, 35
Ané, C, 125
Arunapuram, P, 10
Atarhouch, T, 140
Atkinson, QD, 59
Ayres, D, 120
Baele, G, 143–145
Bahl, J, 99
Bahlo, M, 31
Balding, DJ, 15
Barnes, I, 31
Barrett, M, 168
Barton, NH, 78
Beaumont, MA, 72
Bedford, T, 75
Beerli, P, 6, 7, 15, 31, 72, 75
Belfiore, N, 125
Berger, JO, 14, 15, 19
Bernardo, JM, 14, 15
Biek, R, 76, 77, 139
Bielejec, F, 118, 141
Bloomquist, EW, 7, 10
Bofkin, L, 104
Bolstad, WM, 10
Bonhoeffer, S, 41, 76, 78
Boni, MF, 101
Bouckaert, RR, viii, 17, 59, 69, 104, 116,

129, 141, 153, 163, 167–169, 171, 172
Bradley, RK, 10
Brooks, S, 10, 148
Brown, JM, 145
Bryant, D, viii, 7, 101, 120, 124, 128, 129,

166, 168
Bunce, M, 136
Burnham, K, 32
Camargo, A, 125
Campos, PF, 140
Cantor, C, 45, 48

Cavalli-Sforza, L, 6, 23, 24
Chaves, JA, 173
Chung, Y, 125
Coop, G, 72, 80
Cox, J, 130
Crandall, KA, 153
Currie, TE, 101
Debruyne, R, 140
Degnan, JH, 121
Dincă, V, 126, 173
Donnelly, P, 31
Donoghue, MJ, 99
Drummond, AJ, 6–8, 15, 17, 18, 31–34, 43,

54, 65–69, 77, 78, 83, 87, 88, 104, 110,
114, 116, 121, 124, 125, 128, 133,
135–137, 140, 145, 152–154, 163, 166,
169

Duffy, S, 19, 160
Durbin, R, 9
Edwards, A, 6, 23, 24, 38
Edwards, CTT, 32
Etienne, R, 40
Ewing, G, 7, 15, 72, 74, 75
Faria, NR, 141
Fearnhead, P, 31, 75
Felsenstein, J, 6, 7, 14, 18, 29, 31, 33, 51, 55,

57, 71–73, 75, 77, 102, 138
Finlay, EK, 140
Firth, C, 161
Fisher, R, 28
FitzJohn, R, 40
FitzJohn, RG, 40
Ford, CB, 69
Foulds, LR, 169
Fraser, C, 139
Fu, Y, 29
Fujita, MK, 126
Gaut, B, 52
Gavryushkina, A, 24, 43, 70
Gelman, A, 10, 93, 148
Geman, D, 17
Geman, S, 17
Gernhard, T, 39

D
RA

FT
14-7

-2
014

256 List of authors

Geweke, J, 148
Gill, MS, 32
Gillespie, JH, 28
Goldman, N, 52, 104
Goldstein, M, 19
Graham, M, 163
Gray, RD, 59, 120
Gray, RR, 78
Green, P, 17, 18
Greenhill, SJ, 101
Grenfell, BT, 78
Griffiths, RC, 10, 29, 31, 72, 80
Grummer, JA, 128
Gu, X, 56
Gutman, GA, 53
Hailer, F, 126
Harding, E, 36
Harvey, PH, 77
Hasegawa, M, 51
Hastings, W, 15, 16, 19, 31
He, M, 140
Heard, S, 112
Heath, TA, 70
Heidelberger, P, 148
Hein, J, 25
Heled, J, 7, 18, 32, 69, 88, 104, 114, 116, 121,

124, 125, 128, 133, 136, 137, 167–169,
171

Hey, J, 7
Hillis, D, 167
Ho, SY, 101
Ho, SYW, 152
Hoffman, J, 140
Holder, MT, 17, 168
Holmes, EC, 31, 78
Hudson, RR, 28, 29, 74, 75
Huelsenbeck, JP, 6, 15, 22, 59, 65
Huson, DH, 101, 166
Höhna, S, 102, 163, 166, 169
Jackman, T, 164
Jaynes, ET, 10, 19
Jeffreys, H, 15
Jenkins, GM, 69
Jukes, T, 45, 48
Kaplan, NL, 29
Kass, R, 143
Kass, RE, 148
Keeling, MJ, 35
Kendall, DG, 36, 76
Kennedy, J, 163
Kimura, M, 49, 53
Kingman, J, 6, 28
Kishino, H, 65
Klingner, J, 167
Knuth, D, 118
Kouyos, RD, 28

Kubatko, LS, 121
Kuhner, MK, 6, 7, 10, 15, 31, 114
Kuo, L, 18
Kühnert, D, 8, 41, 69, 78
Lakner, C, 163
Lambert, DM, 31, 69, 136
Laplace, P, 14
Larget, B, 15, 166, 169
Larkin, M, 9
Lartillot, N, 15
Leaché, AD, 124, 126, 132
Lemey, P, 18, 32, 72, 74, 76, 77, 79, 136, 140,

160
Leonard, J, 31
Lepage, T, 66
Leventhal, GE, 35, 41, 78
Levinson, G, 53
Lewis, PO, 15, 60
Lewis, SM, 148
Li, S, 15
Li, WLS, 66, 153
Liu, L, 7, 124
Loreille, O, 31
Lunter, G, 6, 10, 103
MacKay, DJ, 10
Maddison, DR, 71
Maddison, WP, 40, 71, 72
Mallick, B, 18
Marjoram, P, 10, 31
Matschiner, M, 69, 116
Matsumoto, M, 118
Mau, B, 15, 165
May, RM, 35
McCormack, JE, 173
Meade, A, 15
Meredith, R, 39
Metropolis, N, 15, 19, 31
Minin, VN, 32, 33
Moen, DS, 104
Molina, J, 126
Mollentze, N, 78
Monjane, AL, 141
Mooers, A, 112
Moran, PAP, 28
Morlon, H, 39
Moulton, V, 166
Mourier, T, 101
Muse, S, 52
Mutreja, A, 136
Nagalingum, N, 99
Nee, SC, 29, 39, 112
Nei, M, 41, 121
Newton, M, 15, 143
Nicholls, GK, 59, 120
Nishimura, T, 118
Notredame, C, 10

D
RA

FT
14-7

-2
014

List of authors 257

Novák, A, 10, 103
Nylander, JAA, 163
Ohta, T, 53
Opgen-Rhein, R, 32
Pâques, F, 53
Pagel, MD, 15, 77
Palacios, JA, 33
Palmer, D, 72, 78
Pamilo, P, 41, 121
Penny, D, 56, 59
Pereira, L, 105
Posada, D, 153
Procter, JB, 163
Pybus, OG, 8, 29, 32, 33, 78, 110, 141
Pyron, RA, 60
Rabosky, D, 40
Raftery, A, 143, 144
Raftery, AE, 148
Rambaut, A, 8, 15, 29, 31, 69, 74, 78, 83,

120, 157
Rannala, B, 15, 38, 65, 66, 112, 124, 169
Rasmussen, DA, 78
Redelings, BD, 6, 10, 103
Reid, NM, 121
Richard, GF, 53
Robinson, D, 169
Rodrigo, AG, 7, 31, 33, 75
Rodrigue, N, 75
Rohani, P, 35
Ronquist, F, 15, 22, 69, 70, 78
Rosenberg, M, 88, 105
Rosenberg, MS, 9
Rosenberg, NA, 121
Roure, B, 104
Rubin, DB, 148
Sanmart́ın, I, 71
Sargsyan, O, 28
Sarich, VM, 61, 63
Sato, A, 122
Seo, TK, 7
Shankarappa, R, 31
Shapiro, B, 69, 101, 104, 108, 136, 154
Sherlock, C, 75
Silva, E de, 101, 139
Simon, D, 15
Sjödin, P, 28
Slatkin, M, 29, 71
Smith, BJ, 148
Smith, GP, 53
Smith, SA, 99
Smith, TB, 173
Stadler, T, 37–41, 76, 78, 112, 113, 136, 138
Steel, M, 157
Stephens, M, 31
Stewart, WJ, 13, 46

Stockham, C, 169
Strimmer, K, 32
Suchard, MA, 6, 7, 10, 66–68, 74, 87, 103,

120, 154, 155
Sullivan, J, 56
Swofford, DL, 56, 71
Tajima, F, 29, 43
Takahata, N, 29
Tatem, AJ, 78
Tavaré, S, 29, 31
Teixeira, S, 140
Teslenko, M, 78
Thorne, JL, 65
Vaughan, TG, 15, 43, 74, 75, 145
Vijaykrishna, D, 136
Volz, EM, 8, 35, 36, 72, 78
Waddell, P, 56
Wakeley, J, 28
Wallace, R, 71
Welch, D, 78
Welch, PD, 148
Whidden, C, 163
Wiens, JJ, 104
Wilson, AC, 61, 63
Wilson, IJ, 15
Wolinsky, S, 31
Wong, KM, 10
Worobey, M, 32, 136
Wright, S, 28
Wu, CH, 18, 54, 59, 104, 153
Xie, W, 144
Yang, Z, 15, 38, 52, 55, 65, 66, 105, 107, 112,

153, 169
Yoder, A, 66, 105
Ypma, RJF, 43
Yu, Y, 125
Yule, G, 36, 38

D
RA

FT
14-7

-2
014

List of subjects

*BEAST, 41, 125–128, 155, 191
convergence, 126

3seq, 101
ACT, 158
add-on, see plug-in
AIC, 32
AICM, 144
Akaike information criterion, 144
Alignment, 178, 181, 183
alignment, 6, 101–104, 156, 183
ambiguous data, 103
amino acids, 4
ancestral recombination graph, 29
ancestral state reconstruction, 71, 140, 161,

162
anolis, 164, 167, 171, 173
ascertainment bias, 130
attributes, see XML
auto correlation time, 158
autocorrelated clock, 65
Bayes factor, 14, 141–144, 153, 155, 156
Bayes formula, 13
Bayesian inference, 14
Bayesian skyline plot, see BSP
Bayesian stochastic variable selection, see

BSVS
Beagle, 120
beagle, 131
BEAST-Object, 180
BEAST-object, 177–179, 181, 182, 205, 206
BEASTlabs, 118
BEASTObject, 177, 178, 205
BEASTObject, 177, 178
BEASTShell, 227
BEAUti, 84, 115–117, 192, 198, 218–221, 223

calibration, 89
clock model, 87
main-template, 219
MCMC, 90
mergepoint, 222
mergewith, 222
partition-template, 219
partitions, 85

priors, 88
site model, 86
sub-template, 219
substitution model, 86
taxon set, 89
template, 219, 221, 227, 228
XML, 90

BeautiPanelConfig, 219
BeautiSubtemplate, 219
beta distribution, 106
BF, see Bayes factor
bi-modal traces, 150, 151, 158
bifurcating tree, 21
binary tree, 21
biopy, 127, 171
birth death model, 112
birth rate, 112, 113
birth rate prior, 113
birth-death model, 36–41

constant rate, 37, 38
general, 40
serially sampled, 40, 41
time-dependent, 39

BitFlipOperator, 188
BooleanParameter, 183, 186
boom bust model, 118, 120
branch length, 21
branch rates, 64–68
Brownian motion, 65
BSP, 31–33, 105, 113, 114, 136, 137, 153,

154, 158, 159
BSVS, 18, 33, 74, 161, 223
burn-in, 96, 120, 148, 150

CalculationNode, 179, 184–187
calibrated Yule, 88
calibrated Yule prior, 116
calibration, 64, 68, 69, 88, 89, 110, 115–117,

157, 162
monophyletic, 117
multiple, 116
root, 117

calibration density, 69
CDATA, see XML

D
RA

FT
14-7

-2
014

List of subjects 259

Central Posterior Density interval, 151
chain length, 90
CIR, 130
Citation, 206
citations, 92
clade, 116, 165, 166
clade set, 165
CladeAge, 116
classic skyline plot, 31
clean, 184
clock

strict vs relaxed, 152, 154
clock model, 87, 109, 110
clock rate, 109–111, 151, 152, 157
clock rate prior, 111, 112, 161
clustal, 10
coalescent, 6, 7, 25, 29–34, 38, 113–115

contemporaneous, 29
non-parametric, 31, 33
parametric, 29
serially sampled, 33

coalescent model, 154
coalescent prior, 112
coalescent theory, 6
coalescent tree prior, 102
codon model, 52, 53, 154
codon positions, 85
coefficient of variation, 152
comment, see XML
common ancestor, 20
common ancestor heights, 97, 171
compound Poisson process, 65
CompoundDistribution, 181
concatenate sequences, 105
conditional clade probabilities, 169
conditional probability, 11
consensus tree

seesummary tree, 95
constant population model, 154
constant population size coalescent, 114
constant rate birth-death model, 37, 38
continuous phylogeography, 76, 141
Continuous time Markov process, 13
continuous-time Markov process, 6, 46
convergence, 126, 131, 148–150, 157, 158, 160
Convert to Newick, 170
Cox-Ingersoll-Ross process, 130
CPD, 151
credible interval, 151
credible set, 164
cryptic species, 128, 132
CTMP, 13
cycle, 187
Darwin’s finches, 121, 123, 124
data-type, 190
DataType, 190

DeltaExchange, 188
demographic model, 154
demographic reconstruction, 159
dengue, 173
DensiTree, 97, 98, 100, 127, 156, 171–173
Description, 204, 206
detailed balance

seereversibility, 17
diploid, 129, 131
dirty, 184, 186
discrete phylogeography, 140
distance, 190
Distribution, 181, 183, 187
distribution, 106, 183
divergence times, 22, 116
documentation, 182
dominant alleles, 130
duplicate sequences, 101, 102
early stopping, 119
EBSP, 33, 114, 137, 159
EBSPAnalyser, 137
ecology, 9
effective population size, 6, 28, 29, 31
effective sample size, 16, see ESS
Eigenvalues, 161
element, see XML
empirical frequencies, 87
entity, see XML
epidemic model, 146
ESS, 16, 143, 149–151, 153, 158, 161

increasing, 149, 150
ESS, 189
estimate population size, 31
Exchange, 188
expectation, 12
exponential distribution, 106
exponential population model, 154
F81, 51
Felsenstein’s likelihood, 54, 55
Felsenstein’s pruning algorithm, 55, 57, 59
FigTree, 84, 97, 98, 100, 141, 170, 171
Fisher Information matrix, 15
fix mean substitution rate, 87, 109
fixed topology, 118, 154
fossilized birth-death process, 70
Frequencies, 179
frequencies, 87
frequency model, 109
fromXML, 186
fully-resolved tree, 21
gamma categories, 108
gamma category count, 87
gamma distribution, 106
Gamma prior, 88
gamma rate variation, 55, 56
gamma shape, 95, 97

D
RA

FT
14-7

-2
014

260 List of subjects

gamma shape prior, 89, 108
gene duplication, 10
gene tree, 123, 124
Gibbs operator, 17, 189, 213
Goldman-Yang-94, 53
growth rate, 113, 157
GTR, 52, 105, 107, 109
GTR rates, 107
haploid, 129, 131
harmonic mean, 142, 144
Hastings ratio, 17
HCV, 29
highest posterior density interval, 14, 151
HKY, 51, 87, 105, 109, 178, 179, 181
HKY kappa, 89, 95, 98, 107
HPD, 14, 151
improper prior, 111, 133, 158
incomplete lineage sorting, 7, 41, 121
increasing ESS, 149, 150
independent gamma rate model, 66
informative prior, 14
ingroup, 102, 103
initAndValidate, 206
Input, 177, 207, 208
input, 177–179, 181, 182, 205–208
InputEditor, 192, 219, 220
instantaneous transition rate matrix, 46
IntegerParameter, 183, 186
integration testing, 226, 227
IntRandomWalkOperator, 188
invariant sites, 56, 108
inverse gamma distribution, 106
Jacobian, 17
JC69, 107
Jeffrey’s prior, 111, 114
jModelTest, 153
joint probability, 11
Jukes Cantor, 48

distance, 190
substitution model, 178

JUnit, 226
K80, 49
kappa prior, 89, 107
landscape aware phylogeography, 141
language evolution, 59
laplace distribution, 106
lateral gene transfer, 10
leaf dating, 69
likelihood, 13, 181
linking models, 86
linking trees, 127
log, 183

combine, 150
trace, 148, 150

log every, 117, 119

log frequency, 117, 119
log normal, 107, 116
LogCombiner, 150, 159, 162
Loggable, 181, 189
Logger, 183, 189
logger, 181
logging, 90
logistic model, 146
lognormal distribution, 106
main-template, 219
majority rule consensus tree, 168
MAP tree, 169
marginal likelihood, 13, 14, 142–144
marginal posterior, 95, 150, 151
marginal probability, 11
Markov chain Monte Carlo algorithm, see

MCMC
Markov process, 13
MASTER, 146
maximum a posteriori tree, 169
maximum clade credibility tree, 168
maximum credibility tree, 169
maximum likelihood, 18
MCC tree, 168
MCMC, 15, 19, 183–185
MCMC, 183, 187
measurably evolving populations, 69
median tree, 169
mergepoint, 220, 222
mergepoint, 197
mergewith, 222
mergewith, 197
Mersenne prime twister, 118
microsattelite models, 53, 54
migration, 29
missing data, 104
misspecification, 156, 158
mitochondrial DNA, 122
MK/MKv model, 60
ML, 18
model averaging, 59
model comparison, 142, 144
model selection, 14, 132, 142, 154, 155
ModelTest, 153, 154
molecular clock, 61–68
molecular phylogenetics, 4
monophyletic, 89, 103, 123, 128, 134
monophyly, 116, 117, 155, 157
Moran model, 28
morphological data, 60
MRCA, 116, 141
MRCA time, 152, 155
MRCATime, 189
mugration model, 74
multi dimensional scaling, 167
multi epoch model, 118, 120

D
RA

FT
14-7

-2
014

List of subjects 261

multi-species coalescent, 125
multifurcating tree, 21
multispecies coalescent, 7, 8, 41, 42, 122
Muse-Gaut-94, 52, 53
name space, see XML
NaN, 134
Narrow exchange operator, 188
negative branch lengths, 170, 171
neighbor network, 166
neighbour joining, 157
neighbour network, 167
Newick, 118, 157, 170, 181, 189
NEXUS, 85, 202
Node, 183, 186
node dating, 69, 99
NodeReheight (operator), 189
non starting, 157
non-convergence, 143, 157, 158, 160
non-informative prior, 14
non-parametric coalescent, 31
non-polymorphic data, 130
nonsynonymous, 52, 53
normal, 116
normal distribution, 106
nucleotides, 4
number of BSP groups, 114
number of ranked trees, 24, 25
number of trees, 23
number trees, 25
objective Bayesian, 14, 19
OneOnX, 158
OneOnX prior, 111
open access, 177
Operator, 183, 187
operator, 15, 16, 179, 183, 187, 189

acceptance rate, 147
operator analysis, 93
operator schedule, 18
operator weight, 117, 118
out of memory Tracer, 162
outgroup, 102, 103
package, 216, 217, 219, 220, 223, 224,

226–229
BDSKY, 216
beast-classic, 141, 217
beast-geo, 141
BEASTlabs, 118, 216
BEASTShell, 217
MASTER, 146, 216, 227
MultiTypeTree, 217
RBS, 153, 216
SNAPP, 129, 216
subst-BMA, 153, 216

packagemanager, 117, 218
pairwise path sampling, 145
Parameter, 183, 186

parameter, 183
parametric coalescent, 29
parametrisation, 113, 115
paraphyly, 123
parsimony, 18, 71
partially-resolved tree, 21
partition, 110, 111, 190
partition-template, 219
partitions, 85, 87, 104, 110

combine, 105
path sampling, 144
Path-O-gen, 156
philosophy, 182
phylodynamics, 8, 9
phylogenetic likelihood, 6
phylogenetic tree, 4, 6
phylogeography, 71, 74, 76–78, 140, 141, 161

discrete, 161
plate, see XML
plug-in, 117

RBS, 18
Poisson, 110
Poisson process, 62
polytomy, 21, 118
population genetics, 102
population size, 29, 124, 125, 146
population size estimates, 127, 131, 132, 159
population size prior, 114
populations divergence, 29
posterior, 13, 150, 181

compare, 143
posterior distribution, 151
pre burnin field, 90
primates, 84
prior, 13, 15, 88, 105, 107, 108, 111–116, 143,

150, 156, 158, 162, 181
gamma shape, 89
improper, 133, 158
informative, 14, 19
kappa, 89
non-informative, 14, 19
proper, 133, 158
scale parameter, 88

probability density, 12
probability density function, 11
probability distribution, 11
proper prior, 111, 133, 158
protein coding, 154
pruning algorithm, 55, 57, 59
pseudo random number generator, 118
random clock, 66–68
random number, 118
random variable, 11
random walk phylogeography, 76
RandomGeneTree, 187
ranked trees, 24, 31, 34

D
RA

FT
14-7

-2
014

262 List of subjects

rate estimate, 160, 161
rate matrix, 46
rate prior, 162
rate variation across sites, 55
rates, 110, 160, 161
RBS, 153
RealParameter, 183, 186
RealRandomWalkOperator, 188
reassortment, 10
recombinant sequences, 101
recombination, 7, 10, 29, 125
relaxed clock, 63, 109, 110, 113, 152, 154,

159, 160
relaxed random walk, 76
restore, 186
resuming runs, 119, 120
reversibility, 17
reversible jump, 18
Robinson-Foulds distance, 169
root height, 117
rooted tree, 21, 22
running BEAST, 91
sample from the posterior, 16
sample space, 11
sampled ancestor trees, 70
sampling from prior, 98, 123, 133, 134, 156,

158, 226, 227
sampling times, 22
scale operator, 17
ScaleOperator, 188
scope, 177
seed, 118, 119
Sequence, 181
sequence alignment, 10
sequence simulator, 145, 146, 227
sequences, 102
SequenceSimulator, 227
serially sampled data, 9, 33, 34, 69, 113, 135,

136
simulation study, 145, 146
site model, 105
site pattern, 104, 105
skyline plot, 31
SNAPP, 128–132
SNP, 131
species assignment, 128, 132
species delimitation, 132
species tree, 123, 124
SplitsTree, 101
standard deviation of sample mean, 151
standard error, 151
starting tree, 118, 157
State, 180, 181, 183–187
state, 183
StateNode, 179, 180, 184–187
StateNodeInitialiser, 187

stationary Markov process, 47
stepping stone algorithm, 144, 145
stochastic Dollo, 120
stochastic process, 12, 13
stopping, 119
store, 185, 186
store every field, 90
strict clock, 87, 109, 110, 116, 152, 154
structured coalescent, 33, 74, 77, 146
structured time-trees, 29
sub-template, 219
subjective Bayesian, 14, 19
subst-BMA, 153
substitution model, 45–57, 59, 86, 105, 153,

178
BSVS, 223
codon, 52
covarion, 59
CTMC, 59
GTR, 52, 105, 107, 109
HKY, 51, 105, 109, 178, 179, 181
JC69, 107
Jukes Cantor, 48, 178
K80, 49
KF81, 51
microsattelite, 53, 54
MK/MKv, 60
multi epoch, 118, 120
nucleotide, 47
reversible jump, 153
selection, 153
stochastic Dollo, 59, 120
TN93, 107
VS, 223, 224, 226–228

substitution rate, 87, 109–111, 129, 160, 161
substitution rate prior, 111, 112
substitutions per site, 21
subtemplate, 221
subtemplate, 227
SubtreeSlide (operator), 188
summary tree, 95, 168–173
SwapOperator, 188
synonymous, 52, 53
T-Coffee, 10
tag, see XML
taxa, 20
template, 219
testing, 226, 227
Thorne-Kishino continuous autocorrelated

model, 65
time reversible Markov process, 47
time-dependent birth-death model, 39
time-stamped data, 69
time-tree, 22, 25
tip dates, 135, 136, 160, 161
TipDatesRandomWalker, 189

D
RA

FT
14-7

-2
014

List of subjects 263

TipDatesScaler, 189
tMRCA, 152
TN93, 107
total-evidence dating, 70
toXML, 186
trace log, 16, 93
Tracer, 84, 93–95, 148–152, 159, 162, 202

out of memory, 162
transition, 107
transition probability matrix, 46
transversion, 105
Tree, 178, 183, 186
tree, 20
tree height, 152
tree log, 16
tree prior, 69, 112, see BSP, see coalescent,

see Yule, 113, 114
tree shape, 24
tree whispering, 163
TreeAnnotator, 95, 97, 141, 168, 170, 171

burn-in, 96
heights, 97

TreeHeightLogger, 189
TreeLikelihood, 178
treelikelihood, 103
TreeLogAnalyser, 156, 166
TreeParser, 118
TreeWithMetaDataLogger, 189, 214
tuning parameter, 18
uncorrelated clock, 65
unidentifiable, 109, 110
Uniform (operator), 188
uniform distribution, 106
UniformOperator, 188
uninformative prior, 88
unit testing, 226
units

clock rate, 151, 152
skyline plot, 136

unrooted tree, 21, 22
UpDownOperator, 188
UPGMA, 157, 190
validation, 182
value input, 223
virus evolution, 8
vision, 177
visualise trees, 127
VS substitution model, 223, 224, 226–228
Wide exchange operator, 188
wiki, 177
WilsonBalding (operator), 188
Windows, 90
Wright-Fisher population, 29, 36
XML, 90, 182, 193

attributes, 193

CDATA, 194, 223
comment, 194
declaration, 193, 199
element, 193
entity, 194
id attribute, 195, 201
idref attribute, 195, 196, 198, 199, 201
map, 197, 198
name attribute, 195, 198
name space, 195
plate, 197
reserved attributes, 195
spec attribute, 195, 198
tag, 193

Yule, 221
Yule prior, 104, 112, 113, 115, 116, 130, 181

calibrated, 116
zero mutation, 130

	Preface
	Acknowledgements
	Part I Theory
	Introduction
	Molecular phylogenetics
	Coalescent theory
	Virus evolution and phylodynamics
	Before and beyond trees
	Probability and inference

	Evolutionary trees
	Types of trees
	Counting trees
	The coalescent
	Birth-death models
	Trees within trees
	Exercise

	Substitution and site models
	Continuous-time Markov process
	DNA models
	Codon models
	Microsatellite models
	Felsenstein's likelihood
	Rate variation across sites
	Felsenstein's pruning algorithm
	Miscellanea

	The molecular clock
	Time-trees and evolutionary rates
	The molecular clock
	Relaxing the molecular clock
	Calibrating the molecular clock

	Structured trees and phylogeography
	Statistical phylogeography
	Multi-type trees
	Mugration models
	The structured coalescent
	Structured birth–death models
	Phylogeography in a spatial continuum
	Phylodynamics with structured trees
	Conclusion

	Part II Practice
	Bayesian evolutionary analysis by sampling trees
	BEAUti
	Running BEAST
	Analyzing the results
	Marginal posterior estimates
	Obtaining an estimate of the phylogenetic tree
	Visualising the tree estimate
	Comparing your results to the prior

	Setting up and running a phylogenetic analysis
	Preparing alignments
	Choosing priors/model set-up
	Miscellanea
	Running BEAST

	Estimating species trees from multilocus data
	Darwin's finches
	Bayesian multispecies coalescent model from sequence data
	*BEAST
	SNAPP

	Advanced analysis
	Sampling from the prior
	Serially sampled data
	Demographic reconstruction
	Ancestral reconstruction and phylogeography
	Comparing different models
	Simulation studies

	Posterior analysis and post-processing
	Trace log file interpretation
	Model selection
	Trouble shooting

	Exploring phylogenetic tree space
	Tree Set Analysis Methods
	Summary Trees
	DensiTree

	Part III Programming
	Getting started with BEAST 2
	A quick tour of BEAST 2
	BEAST core: BEAST-objects and inputs
	MCMC library
	The evolution library
	Other bits and pieces
	Exercise

	BEAST XML
	What is XML
	BEAST file format and the parser processing model
	An Annotated Example
	Exercise

	Coding and design patterns
	Basic patterns
	Input patterns
	InitAndValidate patterns
	CalculationNode patterns
	Common extensions
	Tips
	Known ways to get into trouble
	Exercise

	Putting it all together
	What is a package?
	BEAUti
	Variable selection based substitution model package example
	Exercise

	Bibliography
	List of authors
	List of subjects

