

A Brief Introduction to the

Phylogenetic Analysis Library Version 1.5

Matthew Goode 1, Korbinian Strimmer2, Alexei Drummond3, Ed Buckler4, Allen Rodrigo1
1School of Biological Sciences

University of Auckland
Private Bag 91029, Auckland, New Zealand

m.goode@auckland.ac.nz, a.rodrigo@auckland.ac.nz

2Department of Statistics
University of Munich

Ludwigstrasse 33, 80539 Munich, Germany

strimmer@stat.uni-muenchen.de

3 Department of Statistics and Department of Zoology
Oxford University

 OX3 1PS United Kingdom

alexei.drummond@zoology.oxford.ac.uk

4 Institute for Genomic Diversity,
Cornell University

159 Biotechnology Bldg, Ithaca, NY 14853-2703

esb33@cornell.edu

Abstract
The Phylogenetic Analysis Library (PAL) is a Java class
library for performing phylogenetic inference and analysis
of primarily molecular sequence data. In this paper the
features of PAL are described, in particular the new
features since version 1.1. Practical examples of the usage
of PAL are also given. 1

Keywords: “Phylogenetic analysis” Java "Open Source"

1 Introduction

The Phylogenetic Analysis Library (PAL) project
(Drummond and Strimmer, 2001) is a collaborative,
open-source project developed under the lGPL license
(see www.gnu.org). The purpose of PAL is to provide a
useful toolkit of compatible data structures and methods
for molecular sequence analysis. PAL aims to provide
well written implementations of standard phylogenetic
tools. Features include tree construction/manipulation,
simulation, and statistical analysis. PAL is written using
the popular Java programming language (see
java.sun.com) and is designed with a strong object-
orientated focus. Java is a scalable modern language

Copyright © 2004, Australian Computer Society, Inc. This
paper appeared at the 2nd Asia-Pacific Bioinformatics
Conference (APBC2004), Dunedin, New Zealand. Conferences
in Research and Practice in Information Technology, Vol. 29.
Yi-Ping Phoebe Chen. Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

which allows the easy construction of cross-platform
applications.

The intended audience for the PAL project is two-fold.
First, PAL is a tool for the developers of phylogenetic
applications. Second, PAL aids the bioinformatics
researcher with ambitious experimental ideas that require
a more programmatic approach than the user interface or
scripting abilities of other packages. The PAL resource
has been utilised in a number of projects including the
Mesquite project (http://mesquiteproject.org), the DNA
Surveillance project (Ross et al., 2003), and others. The
PEBBLE application (http://www.cebl.auckland.ac.nz)
provides in part a graphical front-end to PAL, and the
VANILLA package (see link from PAL website)
provides command line access.

1.1 Availability

The PAL project website has moved a number of times in
recent years. The current location, stable for the
foreseeable future is at:

http://www.cebl.auckland.ac.nz/pal-project

All releases of PAL are archived and available from the
website. Snapshots of the current development version
are posted semi-weekly. An email list is available to
receive announcements regarding new versions.

1.2 Contributing

As PAL is open source and released under the lGPL
licence users are free to make changes for their own

175

personal use. Users who have developed a worthwhile
addition to PAL, and who wish to share with other users,
can submit their changes to the PAL maintainers by
following the related information found on the website.
Users who contribute a substantial amount can apply for
direct access to the PAL CVS1 repository.

2 The Power of PAL

The last paper relating to PAL, Drummond and Strimmer
(2001), described the features of PAL version 1.1. The
most recent release of PAL is version 1.5 (as of
November 2003), and a number of new features have
appeared. There are now over 250 classes spread across
19 packages (see Table 1).

2.1 Original Features

A selection of specific features of PAL available since
version 1.1 includes:

1 CVS, or Concurrent Versioning System is a tool for
managing concurrent access to a software project. See
www.cvshome.org.

• The reading and writing of sequence alignment,
distance matrices, and phylogenetic trees.

• The modelling of substitution for nucleotide and
amino acid sequence data, with rate
heterogeneity (Yang 1994).

• Simulation of coalescent intervals, and
estimation of demographic parameters (Donnelly
and Tavare, 1995).

• Forward simulation of sequence data across a
tree.

• Estimation of demographic parameters.

• Statistical tests such the Kishinio-Hasegawa and
Shimodaira-Hasegawa tests (Goldman et al.,
2000).

• Tree construction methods via cluster methods
such as neighbour-joining, UPGMA, and
sUPGMA (Drummond and Rodrigo, 2000).

This is not an exhaustive list, and the reader is again
referred to Drummond and Strimmer (2001).

Package Brief Descripti on

pal.alignment Data structures, and utilities for sequence alignment.

pal.algorithmics A generic set of components for algorithmic procedure such as hill climbing and simulated
annealing.

pal.coalescent Modelling of population genetic processes using coalescent theory.

pal.datatype Classes and tools for describing sequence data types.

pal.distance Data structures and tools related to generic distances.

pal.eval For evaluating evolutionary trees and estimating parameters under a likelihood framework.

pal.gui Tools for the display of phylogenetic trees, and other special objects.

pal.io Text input/output tools.

pal.math Optimisation methods, special functions, numerical derivatives, etc.

pal.misc Classes and tools that do not fit into other packages.

pal.mep Models relating to measurably evolving populations.

pal.popgen Linkage disequilibrium tools.

pal.statistics Tree tests, distributions, bootstrap estimators.

pal.substmodel Models of substitution, with common nucleotide models (GTR), amino acid models (Blosum62,
Dayhoff), and codon models .

pal.supgma Classes specific to the sUPGMA analysis.

pal.tree Tools and data structures for building, describing, and modifying trees.

pal.treesearch Classes relating specifically to tree search methods, such as ML search.

pal.util Utility methods, such as sorting.

pal.xml Preliminary support for XML input/output.

Table 1: The 19 Java Packages defined in PAL (version 1.5). New packages since version 1.1 are:
pal.algorithmics, pal.mep, pal.popgen, pal.supgma, pal.treesearch, and pal.xml .

176

2.2 New Features

As of version 1.5 a number of new features have
appeared in PAL, including:

• Maximum likelihood tree search for
unconstrained, unrooted trees. Includes
advanced features such as support for simulated
annealing, simultaneous NNI (Guindon and
Gascuel, 2003), and simultaneous substitution
model estimation.

• Easier access for fixed topology ML analysis,
and faster, more general, likelihood calculation.

• The serial-sample analysis of (Drummond et al.,
2001), and stronger support for sUPGMA
(Drummond et al., 2000).

• The neutral and selection codon models of
substitution of Neilson and Yang (1998).

• More stable input/output, include limited support
for Nexus alignment files.

• More comprehensive data type conversion.

• More robust and powerful tree manipulation
including mid-point rooting, rooting by an out-
group, taxa restriction.

• The inclusion of “Tool” classes which provide
static access to common features. PAL has an
ever adapting interface, and the new Tool classes
are a step to providing a stable access point
across versions of PAL.

• Additional hierarchical clustering methods of
wUPGMA, single -linkage, and complete
linkage.

• Linkage disequilibrium calculation and display.

• Easier bootstrap analysis.

• Numerous new utility functions.

3 Examples of Usage

Given a brief overview of the functionality, the reader
may be left pondering exactly how easy PAL is to use.
An extensive and powerful toolkit is lacking if the tools
are too hard to use by the average user.

An exhaustive discussion of PAL usage is beyond the
scope of this paper. Instead a few simple examples based
around phylogenetic tree inference using maximum
likelihood and neighbour-joining are given to provide the
user with a feel for the applicability and approach of
PAL. An understanding of the basics of Java
programming may be useful, but the purpose is mainly to
illustrate the simplicity of usage. Related source code,
such as package imports, are not shown.

3.1 Housekeeping

The Alignment object is a PAL data structure for
representing a sequence alignment. SubstitutionModel
objects represent a model of character substitution over

time. The later examples in this section rely on the
existence of Alignment and SubstitutionModel objects, so
a good starting point would be the creation of such
objects. As neighbour-joining also requires the use of a
distance matrix a process for construction of such a
matrix, based on an alignment and a substitution model,
is also described.

3.1.1 Loading an Alignment

Sequence alignment formats currently supported by PAL
are 'Fasta', 'Clustal' and 'Phylip' formats, or any format
that simply lists the aligned sequences interleaved or
sequentially without major annotation. Limited support
exists for loading a Nexus alignment. Basic alignment
input can be accessed from the AlignmentTool class. To
load an alignment, the following could be used:

FileReader fr = new FileReader(“example.clustal“);

DataType dt = DataTypeTool.getNucleotides();

Alignment base =
 AlignmentTool.readAlignment(fr, dt);

In general a DataType object is also required in case the
alignment format does not dictate the residue type. In the
previous example the DataTypeTool class was used to
create a DataType object representing nucleotide
characters.

3.1.2 Constructing a Substitution Model

There are several models of substitution defined in PAL,
including nucleotide, amino acid, and codon models. PAL
makes a distinction between a rate matrix, and a
substitution model. A substitution model encompasses
additional functionality such as rate heterogeneity and
may utilise one or more rate matrices. A user would
normally create a rate matrix, such as a GTR matrix
(Lanave, et al. 1984), and then create a substitution model
around such a matrix. For the average user, the
SubstitutionTool class hides such underlying detail. To
construct a general time reversible nucleotide mo del the
following could be used:

double[] freqs =
 AlignmentUtils.estimateFrequencies(base);

double a = 4; double b = 1; double c = 3;

double d = 10; double e = 2;

SubstitutionModel gtr =
 SubstitutionTool.createGTRModel(
 a, b, c, d, e, freqs
);

3.1.3 Calculating Evolutionary Distances

Clustering methods, such as UPGMA and neighbour-
joining, rely on a distance matrix, and do not work
directly with alignment data. The evolutionary distance is
a useful dis tance measure. The evolutionary distance
between two sequences is taken as the branch length of
the maximum likelihood tree containing only the two
sequences, under a set model of substitution.

177

Using the DistanceTool class the creation of a distance
matrix based on evolutionary distances is trivial:

DistanceMatrix dm =
 DistanceTool.constructEvolutionaryDistances(
 base, gtr
);

3.2 Tree Construction

Given that an alignment has been obtained and a
substitution model created (along with a distance matrix
if required) it becomes possible to construct a
phylogenetic tree. Two methods of tree construction are
described here: the powerful, yet computationally
intensive method of maximum likelihood tree search, and
the fast, but less perhaps less accurate, neighbour-joining
method.

3.2.1 Maximum Likelihood Tree Search

A powerful and robust tree building method is that of
maximum likelihood (Felsenstein 1981). The purpose of
the tree search algorithm is to find the topology and
branch lengths of a tree that maximise likelihood, given a
sequence alignment. A model of substitution is important.
The search can also include the substitution model
parameters. The user is warned that, even though much
effort has been expended to achieve efficient
performance, a maximum likelihood tree search can take
a substantial amount of time. The user should also be
aware that heuristic tree search/optimisation methods
such as used by PAL are not guaranteed to always find
the true maxima, and multiple runs are always
recommended.

The tree search algorithm used by PAL has a number of
user changeable parameters. To utilise predefined general
purpose search parameters (as determined by PAL
developers), the TreeSearchTool class can be used. For
example, given the existence of the alignment and
substitution model defined previously the following may
be used:

Tree t = TreeSearchTool.doUnrootedSearch(
 base, gtr

);

To include the model parameters in the search use the
following:

Tree t =
 TreeSearchTool.doUnrootedSearchWithModel(
 base, gtr
);

After a search involving model estimation, the model will
be updated to the parameters relating to the maximum
likelihood tree and substitution model combination.

Advanced fine tuning of the search algorithm is beyond
the scope of this document, but are readily adaptable for
the user that is familiar with the underlying theory.

3.2.2 Neighbour-joining

The maximum-likelihood tree search can be infeasible
when the dataset is too complex (long and many
sequences). In such cases the popular technique of
neighbour-joining (Saitou and Nei 1987) can be utilised.

Given a distance matrix has been created, as previously
described, the construction of a tree using the neighbour-
joining method is trivial. One way to accomplish this is
by constructing a NeighborJoiningTree object,

Tree t = new NeighborJoiningTree(dm);

Alternatively the TreeTool class may be utilised,

Tree t = TreeTool.createNeighbourJoiningTree(dm);

3.3 Finishing Moments

Given the construction of a tree using whatever method, it
would be useful to save such a tree to a file for later
usage, or exporting to another application. Before saving
though, it may be advantageous to root the tree.

3.3.1 Tree Rooting

Both the neighbour-joining method and the maximum
likelihood search construct an un-rooted tree. A user
wishing to root such trees can use the TreeTool class:

Tree rooted = TreeTool.getRooted(t, outgroupNames);

Alternatively, if no out-group is defined, the mid-point
rooting technique can be employed. Mid-point rooting
places the root the tree at the point between the two most
distant taxa, and can be performed using the following:

Tree midPointRooted =
 TreeTool.getMidPointRooted(t);

3.3.2 Saving a Tree

The process of saving a tree is again straightforward. The
TreeTool class provides an easy access to tree input and
output methods. The following can be used to save a tree
in the commonly used Newick format:

FileWriter fw = new FileWriter(“tree.phy”);

TreeTool.writeNewick(t, fw);

4 Future Work

The PAL project, while an effective tool in the current
version, has many windows of opportunity for future
growth. This includes, amongst others, the following:

• New applications of tree search, in particular
tree search across constrained trees. There is also
the possibility of implementing maximum
parsimony.

• A functional MCMC framework for Bayesian
analysis of phylogenetic data.

• Improved input/output including improved XML
and Nexus support.

178

• The ability to perform multiple sequence
alignment using effective techniques.

• Integration with external libraries. In particular a
bridge package is planned between PAL and the
BioJava package (see www.biojava.org).

• Advanced graphical representation, especially
for the production of publication quality
graphics of phylogenetic tree data.

• Unit testing, involving construction of tests to
check the integrity of function modules, and for
problems introduced by related code changes.

• Improved documentation.

• Super-tree functionality.

Much of the work mentioned will be implemented over
time by the major contributors to PAL, but other
contributors, are always welcome to add their own
direction to PAL.

5 Conclusion

The Phylogenetic Analysis Library is an ongoing and
open project to develop a powerful programming toolkit
for phylogenetic analysis using the Java language. This
article introduced the PAL project, and gave an update on
the new features available in version 1.5. Information on
availability and contributing was given. Small appetiser
examples of the use of PAL were given to illustrate the
ease of use, and power, of PAL. Finally, the future work
was outlined.

Acknowledgements

Hardware and resource support was in part through NIH
grant GM59174. This work was supported by a New
Zealand FRST Bright Futures scholarship (A. D.), and
Emmy Noether-Fellowship by the Deutsche
Forschungsgemeinschaft (K. S.). Current support includes
an Allen Wilson Centre of Excellence PhD scholarship
(M. G.). The authors wish to thank Greg Ewing, Iain
Milne, Bruno Afonso, Steven Woolley and others for
their useful contributions and insights.

References

Donnelly, P. and Tavare, S. (1995): Coalescents and
genealogical structure under neutrality. Annu. Rev.
Genet. 29:401-421

Drummond, A. and Rodrigo, A. G. (2000):
Reconstructing genealogies of serial samples under the
asuumption of a molecular clock using serial-sample
UPGMA. Mol. Biol. Evol. 17:1807-1815.

Drummond, A., Forsberg, R. and Rodrigo, A. (2001):
Estimating stepwise changes in substitution rates using
serial samples. Mol. Biol. Evol. 18:1365-1371.

Drummond, A. and Strimmer, K. (2001): PAL: an object-
orientated programming library for molecular evolution
and phylogenetic. Bioinformatics 17(7):662-663.

Felsenstein, J. (1981): Evolutionary trees from DNA
sequences: a maximum likelihood approach. Journal of
Mol .Evol. 17:368-376.

Goldman, N., Anderson, J.P. and Rodrigo, A.G. (2000):
Likelihood-based tests for topologies in phylogenetic.
Syst. Biol. 49:652-670.

Goldman, N. and Yang, Z. (1994): A codon-based model
of nucleotide substitution for protein coding DNA
sequences . Mol. Biol. Evol. 11(5):725-736.

Guindon, S. and Gascuel, O. (2003): A simple, fast and
accurate algorithm to estimate large phylogenies by
maximum likelihood. Systematic Biology 52(5):696-
704.

Lanave, C., Preparata, G., Saccone, C., and Serio., G.
(1984): A new method for calculating evolutionary
substitution rates . Journal of Mol .Evol. 20: 86-93.

Lio, P. and Goldman, N. (1998): Models of molecular
evolution and phylogeny. Genome Res., 8:1233-1244.

Matsumoto, M. and Nishimura, T. (1998): Mersenne
Twister: a 623-dimensionally equidistributed uniform
pseudorandom number generator. ACM Trans.
Modeling Comput. Simul. 8:3-30.

Neilson, R., and Yang, Z. (1998): Likelihood models for
detecting positively selected amino acid sites and
applications to the HIV-1 Envelope Gene. Genetics
148: 929–936.

Saitou, N., and Nei, M. (1987): The neighbor-joining
method: a new method for reconstructing phylogenetic
trees. Mol. Biol. Evol. 4(4):406-425.

Rambaut, A. (2000): Estimating the rate of molecular
evolution: incorporating non-contemporaneous
sequences into maximum likelihood phylogenies.
Bioinformatics 16:395-399.

Ross, H.A. , Lento, G.M., Dalebout, M.L. , Goode, M.,
Ewing, G., McLaren, P., Rodrigo, A.G. , Lavery, S. and
Baker, C.S. (2003): DNA Surveillance: web-based
molecular identification of whales, dolphins and
porpoises . Journal of Heredity 92:111-114.

Yang, Z. (1994) Maximum likelihood phylogenetic
estimation from DNA sequences with variable rates
over sites: approximate methods. Journal of Mol. Evol.
39:306-314 .

179

