
Evaluation of proposal distributions on clock-constrained
trees in Bayesian phylogenetic inference

Sebastian Hoehna
Department of Computer Science

University of Auckland
Auckland, New Zealand

shhn001@ec.auckland.ac.nz

Alexei J. Drummond
Department of Computer Science

University of Auckland
Auckland, New Zealand

alexei@cs.auckland.ac.nz

ABSTRACT
Bayesian Markov chain Monte Carlo (MCMC) has become
one of the principle methods of performing phylogenetic in-
ference. Implementing the Markov chain Monte Carlo al-
gorithm requires the definition of a proposal distribution
which defines a transition kernel over the state space. The
precise form of this transition kernel has a large impact on
the computational efficiency of the algorithm. In this paper
we investigate the efficiency of a number of different pro-
posal distributions for clock-constrained phylogenetic trees
(i.e. constrained by a strict or relaxed molecular clock).
Clock-constrained trees have become increasingly important
in phylogenetic inference, especially in the context of diver-
gence time estimation and their constraints require substan-
tially different proposal algorithms to unrooted phylogenetic
trees.

We investigated the efficiency of seven proposal moves on
clock-constraint trees first on a small data set and then on six
additional data sets. In contrast to the results for the case of
MCMC on unconstrained phylogenetic trees we found that
subtree swapping moves perform better than subtree prune
and regraft algorithms and moderate proposals dominate
bold proposals. However, the results varied with the data
set we analyzed and the intermediate subtree swap proposal
distribution which we introduce in this paper was the only
one with a continuous high level of efficiency.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Trees;
G.3 [Mathematics of Computing]: Probability and Statis-
tics—Markov Processes; G.4 [Mathematics of Comput-
ing]: Mathematical Software—Algorithm design and analy-
sis, Efficiency, Reliability and robustness

Keywords
Clock-constraint phylogenetic inference, Bayesian MCMC,
Mixing in Treespace

1. INTRODUCTION
In the last decade Bayesian MCMC has been established as
the dominant technique for phylogenetic inference. In the
context of this paper phylogenetic inference is the evolution-
ary relation between various species. The relations are rep-
resented in a tree structure where the species are the exter-
nal nodes and the common ancestors are the internal nodes.
Reconstructing the optimal phylogenetic tree from DNA se-
quences is NP-Hard and therefore not feasible for more than
30 sequences[5]. Although no algorithm that guarantees the
computation of the optimal phylogenetic tree under realistic
probabilistic models for trees with hundreds of tips has been
developed, Markov chain Monte Carlo (MCMC) algorithms
provide a good approximation of the posterior distribution
over phylogenetic trees given a multiple alignment of genetic
sequences [8]. The key idea of the MCMC algorithm is col-
lecting samples from a hypothesis space and conclude from
them how the overall hypothesis space looks like and where
the good hypothesis are located. To retrieve the samples
a new hypothesis is proposed and is stochastically accepted
or rejected proportional to its relative probability compared
with the current state. Therefore the algorithm tends to pro-
duce more hypothesis with a high probability over time[14,
7].

The proposal kernel has a large impact on the overall perfor-
mance of the MCMC run, so that good proposal kernels can
lead to much faster convergence. A run is considered to have
converged if it does not change the result (within a thresh-
old) when further iterations or different initial trees were
used. In contrast to this a poor proposal mechanism can
lead to a MCMC algorithm that fails to correctly estimate
the posterior distribution even for small data sets. The pro-
posal kernels or algorithms, which we call moves in the rest
of this paper, can be applied together with weights which
specify the proportion of commitment of this move. In this
research we focus on the behaviour and mixing in tree space
of the most used tree proposal moves for clock-constrained
trees and further improvements.

Phylogenetic trees can be represented as rooted or unrooted,
whereby rooted trees are referred to ultrametric when all
of the external nodes (tips) are contemporaneous (see Fig-
ure 4). More generally they are known as clock-constrained
when tips are fixed at different times. Either way, clock-
constrained trees have n− 1 node heights for n tips whereas
unrooted trees have 2n − 3 branch lengths. Modifications
to the standard tree proposals on unrooted trees have to
be made to accommodate clock-constraints because rooted
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trees have more restrictions than unrooted trees. In partic-
ular, the clock constraint forces each parent node in a phy-
logenetic tree to be older than both of its children. Some
of the most often used moves such as the Tree-Bisection-
and-Reconnetion (TBR), Subtree-Pune-and-Regraft (SPR)
and Nearest-Neighbor-Interchange (NNI) moves violate this
constraint. To maintain the order of the nodes the SPR
and NNI moves can be modified to change the node height
too, whereas for the TBR move this is not feasible without
more complex computations. Following we will only con-
sider clock-constraint phylogenetic trees shortly called trees
if not other specified.

In this paper we will first discuss several metrics to evaluate
the tree proposal moves. This is followed by a discussion
of the tree proposal moves implemented in BEAST [4] and
other MCMC software packages for clock trees. Finally, we
present a comparison for the single moves and the improve-
ment which can be achieved by using the best moves with
the best weights compared to the current default settings in
BEAST.

2. RELATED WORK
Tree distance metrics are studied over the last twenty years
in several papers. Bourque[1] proposed the symmetric differ-
ence and Kuhner and Felsenstein[9] the Branch-Score met-
ric. These two metrics are tested as representative exam-
ples for the current available metrics and their capabilities
to measure the mixing in tree space.

Lakner et al.[10] introduced a framework for measuring ef-
ficiency of tree proposals for non-clock trees with the phy-
logentic inference software MrBayes [16]. The idea behind
their approach is to measure the number of steps required
for the chain to converge. Therefore they assumed that the
time a move consumed is equal for all operators. A second
value they measured was the percentage of converged runs
for each single tree proposal operator. A run has converged
in their definition if it reaches an average standard devia-
tion of split frequencies below 0.01 compared to a reference
run. The reference run is retrieved ahead by several in-
dependent Metropolis Coupled MCMC runs (MCMCMC).
Finally they present their most striking results stating that
bold topology change proposals with a bias preferring more
local rearrangements perform best.

In our results we will show similar behaviour for clock trees.
The tree proposal moves Narrow Exchange, Wide Exchange,
Wilson-Balding and Subtree-Slide are taken from Drum-
mond et al.[3] and the NNI move from Felsenstein et al.[5].

3. METHODS
3.1 Convergence Diagnostics of MCMC runs
A review of convergence diagnosis algorithms for Markov
chain Monte Carlo algorithms is given by Cowles and Car-
lin[2]. Their investigation showed 13 different convergence
diagnostics and concluded that no algorithm is known which
meets the demands of detecting convergence without fail-
ures. They compared diagnostics which do not use any ad-
ditional knowledge as how the optimal distribution should
be. This is due to the huge amount of time a single run
takes and hence usually no previous runs are created which
could present this optimal distribution. This is caused by

the fact that a run with the optimal result requires to be
longer for being more precise. Contrary to this we can use
the prior knowledge of the optimal distribution as we anal-
yse the performance of the MCMC algorithm instead. In our
evaluation the same data set is used for the different moves
and the time to obtain the desired distrubtion is more im-
portant than the distribution itself. So the data set can be
chosen where the optimal distribution is known. A useful
prior knowledge for the convergence is a reference run which
can be used as a benchmark for the runs in the test. Next,
it indicates whether a run has converged to the right pos-
terior distribution if the test run has stabilized close to this
“golden run”.

Recall that a higher performance and faster convergence of
MCMC algorithms can be achieved by good mixing in tree
space. The more an algorithm obtains samples distributed
over the whole space the better the spamles represent the
distribution in the space. Tree comparison metrics or tree
distance metrics are defined as a measurement of the re-
lation between two trees according to their topology and
branch length. This characteristic could be used for mea-
suring the mixing in tree space as how often trees with dif-
ferent distances to a fixed tree are sampled. The more trees
with a high distance and all distance in between are sampled
the higher is the chance that the whole space was explored.
However, non of the tree metrics we used could give an indi-
cation of the performance of the MCMC run. Therefore we
focused on two further ideas. Namely the Split Swap Rate
which we newly introduce in this paper and the convergence
time measured by the maximal deviation of split frequency.

3.1.1 Convergence time by the maximal deviation of
split frequency

The state of the art technique (i.e. implemented in AWTY[18])
to evaluate two MCMC runs is comparing the standard devi-
ation of split frequencies. The splits are defined as groups of
species (taxa) and the split frequency defines the frequency
in percent how often this group of species occured in the
samples. This means how often a subtree was present. To
obtain a measure how related the two trees are we used the
maximal difference of split frequencies.

Since MCMC algorithms are probabilistic algorithms the
performance can vary for the different runs. This leads to a
deviation of the performance, i.e. the maximal difference of
split frequencies is different after the same amount of steps.
Hence the mean of multiple runs is necessary for a reliable
evaluation.

In our studies we used two different means. First we calcu-
lated the integral of the maximal difference of split frequen-
cies over the chain length. Second we calculated the mean
of the maximal difference of split frequencies after a fixed
number of steps. The integral of the maximal difference of
split frequencies is assumed to give a better result because
it uses the past of the run too. But either way of calculating
the mean seems to be justifiable because both diagnostics
agree with each other in the performance of the different
moves.
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3.1.2 Split Swap Rate
We believe that topology changes can be obtained by ob-
serving the partitions (splits) of a data set. Therefore we
invented the Split Swap Rate to measure efficiency compa-
rable between different tree proposal distributions. Recall
that measuring the efficiency of tree proposal moves depends
on the time needed to converge for a MCMC run and the
convergence is defined by the deviation of split frequencies.
Then the frequencies are approximately close enough to their
actual values if there is a high rate of swaps of presence and
the maximal time a run spent in one state (absent or present)
is comparable small to the length of the run or the number
of swaps. The focus for this test lies on the splits which have
a frequency between 5-95% of the golden run. Every other
split will have a neglecting small swap rate and is assumed
to be similar over all operators.

Let rSS denote the split swap rate, si the swaps for split i,
s̄i the average swaps of all operators for split i and σi the
standard deviation of swaps of all operators for split i .

rSS =

nP
i=1

(si−s̄i)
σi

n
(1)

The split swap rate turned out to be good for detailed anal-
ysis where the tree proposal operators mix well and hence it
is a good estimator for convergence. Furthermore we could
verify in our tests that clades exist which are hard to swap
for local operators and prune and regraft operators with
this metric. This was obvious by a low split swap rate for
all these operators compared to the Wide Exchange in the
affected clades (see figure 2). Mossel and Vigoda[15] stated
that these tree valleys exist which are hard to traverse for
prune and regraft operators. Ronquist et al. [17] contra-
dicted that these valleys are unlikely to occur in real data
sets. Lakner et al.[10] also failed to show these valleys. How-
ever, in our results we can clearly present them (see figure
4).

3.2 Tree proposal moves
The kernel of the MCMC algorithm for phylogenetic infer-
ence are tree proposal moves. The tree proposal moves can
be classified in two categories: Branch change moves and
subtree rearrangement moves. Branch change moves focus
on changing the branch length of the tree with topology
changes as side products of it. Further, the moves can be
divided into global and local regarding to their dimension.
A local version is the LOCAL move from [12, 13] and [11]
which is similar to the Subtree-Slide move in BEAST from
Drummond et al.[3]. The local move apply changes in a
small, local area of the tree whereas the global move makes
topology changes which can affect wider parts of the tree.
Therefore the local moves are considered to be moderate and
the global moves bold. We will consider the Subtree-Slide
move as the only branch length move since the performance
for the global move has shown to be poor.

The tree rearrangement moves can be further grouped into
subtree swapping moves and subtree prune and regraft moves.
The subtree swapping moves exchange two subtrees either
locally or globally. This global exchange of two subtrees is
called Wide Exchange and the local one Narrow Exchange
respectively. The Narrow and Wide Exchange we used do

not modify the branch length but could be modified to change
the branch length too. However, shorting the branch length
could demand to change the branch length of further nodes
in the subtree which leads to a lower posterior probability of
the proposal in most cases and therefore is unlikely to pro-
duce good proposals. The other alternative, extending the
branch length, is not necessary because it does not violate
the constraint for root clock-constraint trees if the branch
length remain the same and changing the branch length
could prevent good topology proposals from being accepted.
Additionally to these two existing swapping moves, a mix-
ture between Narrow and Wide Exchange was developed to
obtain a move which is in the middle between moderate and
bold.

The subtree prune and regraft moves listed from moderate
to bold are: NNI, SPR and TBR. The NNI can be con-
sidered as a subtree swapping move too where the Narrow
Exchange is the counterpart from the group of subtree swap-
ping moves. Hence, we extended the Narrow Exchange move
to obtain the NNI in its original meaning. This offers the
possibility to compare the local subtree rearrangement move
with and without branch length changing. The SPR move
is more difficult for clock-constraint phylogenetic trees than
for unconstraint or unrooted trees. It can not be imple-
mented without further modification for the heights of the
nodes. Wilson and Balding proposed one alternative [19]
for the SPR move which is implemented in BEAST [3]. In-
stead of allowing a subtree to be attached on every branch
it is restricted to reattach the subtree as a child of a node
which has to be higher in the tree so that the height does
not have to be decreased. So the disadvantage of decreas-
ing further nodes in the subtree is eliminated. To compare
the SPR with an alternative without changing the branch
length, a new move which we call FNPR (Fixed Nodeheight
Prune and Regraft) was developed. Since the only case of
the TBR which does not need a modification of the node
order for rooted trees is the SPR, the TBR is assumed to
not give any further improvement to the SPR.

Following the implementation of the 7 used moves are de-
scribed more in detail. All moves are reversible. A reversible
move is defined as a move move which can undo the change
by another move of the same algorithm. The ratio of how
likely it is to obtain the new proposal is called Hastings ra-
tio. Let PF define the probability of proposing the new tree
(forward probability) and PB the probability of undoing the
move (backward probability). Then, the Hastings ratio is

hr = PB
PF

[7]. The Hastings ratio is necessary to remove the

bias from the chain with these moves to prefer trees with a
high probability of being proposed.

3.2.1 Subtree-Slide
The Subtree-Slide move [3] is similar to the LOCAL move
proposed by [12, 13] and [11]. The purpose of this move
is rather changing the branch length than proposing a new
topology. A node is randomly chosen and drawn either on
a path towards the root or leafs. For each branch the path
is chosen randomly on the way down. Instead of using the
idea for sliding a distance on a path down as implemented
in BEAST, the LOCAL move changes the node height. [12,
13] proposed to select randomly a canonical representation
of the tree. The canonical representation defines the order
or in this context the path to choose if a node height is
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changed. The topology is generated from the representation
by taking the oldest node to the right and left as the children
recursively. The length of the slide is computed randomly
between −∆ and ∆ whereby the sign indicates the direction.
The Hastings ratio is defined as follows with n as the number
of nodes passed on the path:

hr =

(
1
2n ; if∆ > 0

1 ; otherwise
(2)

3.2.2 Narrow Exchange
Drummond et al.[3] implemented for their phylogenetic in-
ference software BEAST [4] a subtree swap move called Nar-
row Exchange. The Narrow Exchange move is similar to the
NNI move and can be considered as a subset of it. A node
is randomly chosen and exchanged with the sibling of the
parent node if this exchange does not violate the require-
ments of a clock-constraint phylogenetic tree (if the sibling
of the parent has a lower molecular time than the parent
node). Therefore the molecular time of the nodes has not to
be adjusted.

Every node is chosen randomly and swapped with the sib-
ling of its parent. Hence the chance for taking this proposal
is 1

n
where n is the number of nodes. Since the topological

changes affect only the two swapped subtrees and this pro-
posal is reversible, the probability for a backward proposal
is the same 1

n
. The Hastings ratio follows to be 1.

3.2.3 Wide Exchange
The Wide Exchange move is a generalization of the Narrow
Exchange where the second node is chosen randomly too [3].
Both nodes can be arbitrarily far away from each other and
thus this subtree swap move is global.

Let i and j denote two arbitrary chosen nodes. Further, iP is
the parent of i and jP the parent of j. The two nodes i and
j are swapped if height(i) < height(jP ) and height(j) <
height(iP ), otherwise it fails.

Both nodes are selected randomly without any additional
information which nodes to prefer and is reversible since the
only constraint for this move belongs to the node heights
and these are not changed. This leads to the Hastings ratio
of 1.

3.2.4 Intermediate Exchange
The Intermediate Exchange move is newly introduced in this
paper and obtained as a mixture between Narrow and Wide
Exchange. It can be considered as a Wide Exchange where
the second node is not chosen totally arbitrary. The selection
process is given a bias to prefer local nodes with a higher
chance. The probability of a node to get selected as second
depends on the path length to the first node. Let i denote
the first node, j the second node and lij the path length
between them in the current tree, then the probability of
choosing j after i was chosen is:

Pi(j) =
lij

niP
k=1

lik

(3)

where ni are all possible nodes to swap from i considering
the node height constraint, and nj respectively.

The Hastings ratio results from the equation:

Hr =

1
n′

iP
k=1

lik

+ 1
n′

jP
k=1

ljk

1
niP

k=1
lik

+ 1
njP

k=1
ljk

(4)

where n′i is the set of nodes i can swap to after the proposal
and n′j respectively.

3.2.5 NNI
The Nearest Neighbor Interchange (NNI) is one of the stan-
dard operators for tree rearrangements [5]. [6] showed an
implementation for clock-constraint phylogenetic trees. A
branch P → C, where P is the parent of C, is selected ran-
domly and one child of C is swapped with the other child of
P . Further, B is the second child of P and G the parent of
P (grandparent of C). The Narrow Exchange is a subset of
the NNI where the only difference is that the node heights
are changed to allow changes where the chronological order
could be disarranged. Therefore the node height of P is set
randomly between the height of G (hG) and max(hU , hB)
where hU and hB is the height of U and B respectively. To
derive the Hastings ratio hr let hI denote the height of i,
hG the height of the grandparent of i and hB the height of
the sibling of i.

hr = min(1,
hG −max(hU , hB)

hG −max(hI , hB)
) (5)

3.2.6 Wilson-Balding
The Subtree Prune and Regraft move [5] is another standard
operator for phylogenetic inference. The SPR move selects
randomly a non leaf and non root node i. The subtree rooted
at iP is pruned by breaking the edges between the parent
and the other child of iP and connecting these two together.
We used a variation of the SPR move which just changes
the height of iP because clock-constraint trees have stronger
constraints and changing the heights of many node decrease
the likelyhood of the tree to be accepted. The reattachment
point is found by a node which has a height between the
height of i and the root. So the height of iP is set arbitrary
between the height of i and the height of the root as proposed
by [19]. This move is a subset of the original SPR. Let i
and j denote two arbitrary chosen nodes. iP and jP are
the parent nodes of i and j respectively. The moves fails if
height(i) > height(jP ). The range for the new height of
iP is height(jP ) −max(height(i), height(j)). The subtree
belonging to i is pruned and reattached above j. jP is the
pruning node and used as the reattachment node too.

hr =
height(iG)−max(height(i), height(iB))

height(jP )−max(height(i), height(j)) (6)

, where iG denote the grandparent of i and iB the brother
of i.

3.2.7 FNPR
Another alternative for the SPR move is to fix all node
heights. We name this move FNPR (Fixed Nodeheight Prune
and Regraft). Thus a subtree is pruned and reattached with-
out changing any node heights. The FNPR is a smaller sub-
set of the Wilson-Balding move. First, a node i is picked
randomly and a second node j is selected arbitrary from all
nodes. If height(j) > height(iP ) or height(iP ) > height(jP )
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then the move fails because iP does not fit between j and
jP without changing the height. iP and jP are the parent
nodes of i and j respectively. iP is pruned from its original
place and reattached above j.

The Hastings ratio for this move is 1 because no node heights
are changed and both nodes are chosen arbitrary. The pos-
sibility to make the backward proposal remains the same as
the forward probability.

3.3 Estimating the weights for the moves
The combination of the operators is as important as the
choice of the operators. Several of the described operators
are working in different neighbourhoods which complement
each other. The Wide Exchange and the Narrow Exchange
as well as the NNI, Wilson-Balding and FNPR move share
some but not all tree rearrangements. Defining a general
weighting scheme which moves and how often they should
be used is very complicated because the moves and the com-
binations perform different on the diverse data sets. Further
the dimensions of this optimization problem growth with the
amount of available moves. We approach this problem with
a Genetic Algorithm (GA) which optimizes the weights re-
garding the average distance which the MCMC algorithm
had with these values. The MCMC algorithm was run on
the Anolis data set with a chain length of 1 million. We
assume that a good performance on this data set will give a
good performance on most other data sets too. The results
of the GA can be used as a further indication which moves
should be used together.

4. TESTS
The tests for this research were done with a developer’s ver-
sion of BEAST 1.4 where additional moves and metrics were
implemented. We divided the tests into two phases, the opti-
mization phase and validation phase. First, a smaller sample
data set was used to evaluate and optimize the moves. Sec-
ond, the results of the first phase were validated with more
tests on other data sets.

4.1 Evaluation of the tree proposal distribu-
tions

The data set for this first evaluation was extracted from a
set of 19 Anolis species which were reduced to the 950 inter-
esting nucleotides. For retrieving the reference run called
“golden run” we used the standard BEAST moves (Nar-
row Exchange, Wide Exchange, Subtree-Slide and Wilson-
Balding) and run this chain for a length of 100 million. This
length is much longer than usually applied for data sets of
this size. A second run from a different starting point was
used to validate the result. With the online tool AWTY
(Are We There Yet [18]) we could show that this golden
run had converged because the maximal difference of split
frequencies were very low. First we tested each algorithm
separately on its performance. In addition to the tree pro-
posal moves an internal branch length change operator and
root height change operator was used because of the nature
of some moves which do not change the branch length. This
was added in all runs to give all operators the same amount
of proposals during the run. A second approach would be
to include this move to the moves without branch length
changes. Then it would not be possible to analyze if moves
with or without branch length changes perform better. For

all operators we can show that a separation of the topology
and branch length proposal improves the performance.

The performance of each operator was evaluated in two
ways. For every move ten runs were executed for a chain
length of 10 million and from independent initial trees to
observe the behaviour for a move. The split swap rate for
all clades which are between 5-95% of the golden run was
measured and compared to the swap rate of all other runs.
Second the maximal difference of the split frequencies in the
current run compared to the golden run was measured to
observe how close they are. The integral of these values
was calculated and compared with the integrals of the other
moves.

4.2 Validation of the results
TreeBase

Data set No. of taxa No. of sites Type of data matrix acc. no.

1 27 1,949 rRNA, 18s M336
2 29 2,520 rDNA, 18s M501
3 36 1,812 mtDNA, COII (1 - 678), cytb (679 - 1,812) M1510
4 41 1,137 rDNA, 18s M1366
5 43 1,660 rDNA, 18s M932
6 50 378 Nuclear protein coding, wingless see Acc. Numbers

7 50 1,133 rDNA, 18s M1044
8 59 1,824 mtDNA, COII and cytb M1809
9 64 1,008 rDNA, 28S M755

10 67 955 Plastid ribosomal protein, s16 (rps16 ) M1748
11 67 1,098 rDNA, 18s M520
12 71 1,082 rDNA, internal transcribed spacer (ITS) M767

Figure 1: The 6 first data sets used in the research
by Lakner et al. [10] which we used to confirm our
theses.

Lakner et al.[10] used for their research a set of 12 different
data sets between 27 to 71 taxa. To get comparable test
results we used the same data sets to validate our research
from the Anolis data set but we performed the tests only
on the first 6 data sets (see figure 1). However, from their
conclusion we could assume that the first 6 data sets are
sufficient for a qualitative conclusion since they could not
verify any difference of the performance for the moves related
to the size of the data set. Finally, the same framework was
used as described before and additional attention was paid
to the patterns observed in the first test phase.

4.3 Results
4.3.1 Phase 1
In the first phase we obtained a height map for the split
swap rate (see Figure 2) and the convergence time (Figure
3) for our test data set. Focusing just on the swap rate the

Intermediate Narrow NNI FNPR SubtreeSlide Wide Wilson-Balding

Low High

Figure 2: The split swap rate for the 7 different
moves. Each move was run from 10 different starting
trees and the split swap rate measured for the 18
clades between 5-95%. This height map represents
the greyscale where white is the highest split swap
value for this clade. Black means low respectively.

Narrow Exchange outperforms the global counterpart Wide
Exchange in many clades according to its higher mean swap
rate. However, the convergence (shown in Figure 3) is worse.
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Integral of Max Euclidean Distance of Split Frequencies per 
tree proposal move
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Figure 3: This box plot shows the integral over the
distance curves. The distance was measure by the
maximal difference of the split frequencies. This was
done for 10 independent runs for each single tree
proposal move on the Anolis data set. The length
of the MCMC run was 10 million.

This is due to the very poor mixing of four out of the 18
observed clades which leads to a worse overall performance
in contrast to the global moves. These 4 clades in our data
set are very hard to swap for the local and subtree prune and
regraft moves. The clades can be represented in trees which
are only separated by one Wide Exchange move. Since these
clades are crucial for the final result the convergence statistic
was poor. In figure 4 we can show one pair of clades which

Figure 4: A phylogenetic tree showing the swap
done by the Wide Exchange to traverse the tree val-
ley. This was can not be done by any other move in
one step.

can be swapped by one Wide Exchange move. Obviously
it needs more than just one Narrow Exchange or any other
prune and regraft step to swap these clades. This verifies
the statement that real data sets exist for which a global
subtree swapping move is essential for fast convergence.

The Wilson-Balding move and the FNPR move can be both
considered as variations of the original SPR move. Both
moves prune and regraft a subtree globally. The main dif-
ference is that our implementation of the FNPR move does
not change a branch length. The Wilson-Balding move can
change the branch length of the root of the pruned subtree
randomly between the root height and the height of its re-
maining child. An obvious result of our test shows that the
FNPR move performs much better than the Wilson-Balding
move. Further, the acceptance rate for the FNPR move
was PAcc ≈ 0.0084 which is approximately twice as high
as the acceptance rate for the Wilson-Balding move which
was PAcc ≈ 0.0046. The acceptance rate is the percentage
of accepted proposals. The higher the posterior probability
(fitness) of a proposal the higher the chance it gets accepted.

The same behaviour is observable for the Narrow Exchange
and NNI. Both indicate that changing the branch length
simultaneously decreases the acceptance rate. Next it shows
that just a broad range of topology proposals and a higher
acceptance rate are crucial for a high swap rate and fast
convergence.

For our small test data set we can confirm the observa-
tion from [10] that the branch length move namely Subtree-
Slide performs worse compared to the branch rearrangement
moves. Eventually the Subtree-Slide operator can give good
result for a good starting tree. In most runs it was not the
case when we took random starting trees.

Summarized we observed that the global moves perform bet-
ter than the local moves and the tree rearrangement moves
better than the branch change moves. Further, changing the
node heights simultaneously expands the neighbourhood but
worsen the convergence due to the low acceptance of new
proposals.

4.3.2 Phase 2
Integral of max Euclidean Distance of Split Frequencies

0

100000

200000

300000

400000

500000

600000
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800000

DS 1 DS 2 DS 3 DS 4 DS 5 DS 6

FNPR
Intermediate
Narrow
NNI
SubtreeSlide
Wide
Wilson-Balding

Figure 5: The integral of the maximal difference
of split frequencies measured for each of the seven
moves on the six different data sets. This plot shows
the mean of three runs of a length of 100 million.

In phase two we aimed to validate these assumptions on 6
further data sets (see figure 1). The same framework of tests
was performed for this data set as before for the Anolis data
set. Surprisingly most of the before observed characteristics
can not be affirmed in general (see figure 5). The best move
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according to the mean over the maximal differences of split
frequencies is the Narrow Exchange. The majority of the
results seem to be close together and therefore it is more
likely that the Narrow Exchange has converged faster to
the golden run than the other moves. Regardless this good
attitude the Narrow Exchange has some enormous outliers
which show it can get stuck in a different area of the tree
space. Since this outlier is exactly 100% different from the
golden run, it is a clade which is always present (or absent)
in the test run but is never present (or absent) in the golden
run.

But we can show in our result that the branch change move
namely Subtree-Slide does not perform much worse than all
the branch rearrangement moves and has furthermore the
ability produce less outliers than the other moves. This is
contrary to the main conclusion of [10].

The efficiency of the seven moves varied for the six data sets
(see figure 5). In particular, data set 5 shows unexpected
performance for all moves. The measurement we have taken
for this data set might have been to susceptible. A similar
behaviour is observed for data set 4. These data sets are
suitable for further studies to observe the efficiency of seven
different moves for difficult data sets for clock-constraint
trees. These data sets can be studied further to conclude
how they differ from the other data sets and what a good
approach for these data sets could be. If these two data sets
are disregarded there is a strong tendency of moderate tree
proposal distributions to dominate the bolder ones. Fur-
ther, the subtree swapping algorithms perform better than
the subtree prune and regraft algorithms.

4.4 Total performance improvement
Narrow Exchange Wide Exchange SubtreeSlide Wilson-Balding Intermediate FNPR NNI

Current Default Setting 15 3 15 3 - - -
New Proposed Setting 10 3 10 3 5 3 10

Figure 6: The weights for the combination of the
tree proposal distributions for the current default
setting and the new proposed ones.
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Figure 7: This box-plot compares the standard set-
ting for BEAST to the new proposed settings with
the new moves. Each setting was run 10 times for a
chain length of 10 million on each data set.

The benefit of this research is improving the efficiency of
Bayesian phylogenetic inference using MCMC algorithm. The
overall performance of the MCMC algorithm can be achieved
by a combination and weighting scheme which performs bet-
ter than the current default settings in BEAST. To achieve
this goal 10 runs with the default settings and 10 runs with
the new proposed settings were performed on the 6 data sets.
The new proposed settings were obtained as an observation
for the test results of the single tree proposal distributions
and the GA performance. These weightings are presented
in figure 6.

Since data set 5 is expected to mislead clear results we ex-
cluded this dataset from the comparison since both settings
perform equally worse and the difference is rather an out-
come of luck than from better combination of proposal dis-
tributions. Finally we observe a performance improvement
of 10% for the data sets (shown in figure 7) and 20% if we
exclude data set 4 too which is reasonable since it has some
unexpected results compared to all the other data sets.

5. CONCLUSION
The preliminary result of our study is that there is no easy
metric described in the literature to date for measuring the
mixing in tree space. This mixing in tree space is hardly
connected to the convergence of multiple runs from random
starting trees. The state of the art technique is the devia-
tion of posterior split probabilities as implemented in AWTY
[18]. The swap rate we defined in our research could be used
to support this hypothesis of convergence. Further the swap
rate gives more detailed diagnosis of the performance. It is
not dependent on whether the run has converged or not to
give a comparable statement.

In our test on the Anolis data set we conclude that the moves
without changing the branch length simultaneously perform
better. Particularly it means that the Narrow Exchange
performs better than the NNI operator and the FNPR bet-
ter than the Wilson-Balding operator. Hence for clock-
constrained phylogenetic trees a combination of moves chang-
ing the topology and the branch length in another move is
preferable. This conclusion is not confirmed by all other data
sets since the results varied much between each of them.

For the data set of the 19 anolis with 950 nucleotides it
was obvious that there exists a valley between two groups of
good trees. These trees (like Figure 4 shows one example)
are hard to pass for all local and prune-and-regraft moves.
To prevent getting stuck in these tree valleys the Wide Ex-
change operator should always be used additionally if other
moves are also used.

Evaluating the moves by the average swap rate over all
clades can mislead in the conclusion of how fast a move
will converge. For example the Narrow Exchange move had
a better average swap rate but converged slower compared
to the Wide Exchange move. The Narrow Exchange could
not converge very fast because it performed very badly in 4
clades of the Anolis test set. This low swap rate for partic-
ular clades did not influence much the average for the swap
rate. Nevertheless the convergence was determined by the
maximal Euclidean distance of the split frequencies. If one
clade does not swap very often it is very likely to have a
high distance for this split. Hence, fast convergence is just
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approachable if non of the clades has a low swap rate. How-
ever, it gives a good estimation of how good a tree proposal
distribution performs and the results of this metric were con-
tinuous. The moderate tree proposal distributions (Narrow
Exchange and NNI) performed best and this can be verified
for the majority of the convergence analysis of all data sets.

A further improvement for the moves is achieved by mixing
between moderate and bold. We could observe this effect
for a bias that prefers moderate proposal from a bold move
in the Intermediate Exchange. The bias forces the move
to prefer local changes over global ones. This combines the
strength of both moves as having a low convergence time and
being robust for more data sets. We used a simple selection
mechanism which weighted the nodes by their path distance
in the tree to each other. In future research different selec-
tion mechanism (i.e. ones which are used in GA’s) could be
evaluated as how other biases could affect the performance
of the tree proposal moves.

A supplementary study could measure the impact of moves
which change from bold to moderate over time. We believe
that the more moderate moves are essential for fast conver-
gence because the Narrow Exchange showed the best per-
formance in approximately half of the controlled clades in
the anolis data set. But the bolder moves are more robust
so that they can overcome the shortcoming of the moder-
ate moves to get stuck. This could be achieved by a single
move which has a bias from moderate to bold which can be
changed by a parameter. In our studies we could show that
usually the Intermediate Exchange has a performance be-
tween the Narrow and Wide Exchange but in some cases it
performed better than both of them. However, we have not
tested yet if one moves which can be adjusted in its bias per-
forms better than two moves which are selected with a bias.
Thus in phylogenetic inference software like BEAST several
moves are applied they can be easily modified to change
their weights to select the moves over time. The selection of
the moves and the calculation for the weights of them have
the advantage to be computational less expensive since it
has not to be calculated as often as the bias inside a move.
The question remains if both have the same performance.
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