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Abstract— Bayesian Markov chain Monte Carlo (MCMC)
has become one of the principle methods of performing infer-
ence of phylogenetic trees. The MCMC algorithm requires the
definition of a transition kernel over the state space, which de-
pends on Tree Proposal Operators. So, the precise form of these
operators has a large impact on the computational efficiency
of the algorithm. In this paper we investigate the efficiency
of different tree proposals specialized on clock-constrained
phylogenetic trees. Two new operators are developed and their
efficiency is compared to five standard operators. Each of the
seven operators is tested individually on three synthetic datasets
and eleven real datasets. In addition, the single operators are
compared to different mixtures of operators. Results show that
our new operators perform better than their standard counter-
parts, but no operator alone achieved a high efficiency on the
full panel of data sets tested. Finally, our new proposed mixture
using all operators together provides better performance than
current techniques.

I. INTRODUCTION

In evolutionary biology many research projects start with
a phylogenetic analysis [1], i.e. with the reconstruction of an
evolutionary history. The history is expressed for example
as a genealogy or phylogeny, typically represented by a
bifurcating tree. An estimate of the tree is obtained as a point
estimate (e.g. by maximum likelihood) or by a set of trees
(e.g. the 95% credible set of trees in a Bayesian estimate).
Either way, one would really like to consider all possible
trees when constructing this estimate. This gets exponentially
more difficult when the numbers of species studied increases.
In the past decades there have been several different ap-
proaches to find the best trees according to an optimality
criterion such as the Parsimony Score or the likelihood of
the tree. The main approaches are Maximum Parsimony,
Maximum Likelihood and Bayesian Markov chain Monte
Carlo (MCMC). Here we discuss details of the Bayesian
MCMC approach which returns a posterior distribution of
trees and divergence times. The distribution could be calcu-
lated directly using Bayes Theorem, which provides a means
of calculating the probability of the hypothesis given the
data. In context of phylogenetic inference the hypothesis is a
phylogenetic tree and the data is for example a set of related
molecular sequences from different species. Unfortunately,
calculating the posterior distribution directly is not feasible in
a reasonable amount of time. Instead, a sampling algorithm,
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such as the MCMC algorithm, can approximate the distri-
bution via simulation of a Markov chain whose stationary
distribution is the target posterior distribution of interest.

For phylogenetic inference using Bayesian MCMC a new
hypothesis }/, i.e. a phylogenetic tree, is proposed by a Tree
Proposal Operator (which we call simply operator in the rest
of this paper). The proposal h’ is only dependent on the
current hypothesis h and is accepted if u, drawn uniformly
from U(0, 1), satisfies:

P(R)P(h|K) _ P(W)
PRYP(WIh)  P(R)

with oy known as the Hastings ratio [2]. Many operators
are possible and the choice of operator has a large impact
on the overall performance of the MCMC run, so that good
operators can lead to much faster convergence to, and mixing
in, the stationary distribution. The efficiency of different
operators are the subject of this paper.

A. Tree Definitions

In this paper we represent the evolutionary history with
a phylogenetic, bifurcating, rooted tree as shown in Fig. 1.
A phylogenetic tree consists of n — 1 internal nodes and

time

\

Fig. 1. Example of phylogenetic, bifurcated, rooted, clock-constrained tree
with 5 species (A,B,C,D and E).

n leaves. Leaves, or tips, correspond to present species or
individuals while internal nodes represent their ancestors and
the root represents the common ancestor of all nodes. The
arrangement of the nodes or branching pattern is called the
tree topology 7. In clock-constrained trees, every node has
a height 0 (or age) which is the time elapsed between it and
the youngest species. Therefore, the height of the youngest
species is equal to zero and the height of the root is the
time to the most recent common ancestor. Hence, the tree is



restricted so that every ancestor node has to be older than
both its children.

Although some phylogenetic inference programs estimate
unrooted unconstrained phylogenies, in this paper we will
only consider rooted clock-constrained trees, such as those
estimated by software packages like BEAST [3], Batwing
[4], LAMARC [5] and Migrate [6].

B. The Standard Tree Proposal Operators

In this section we describe some standard operators for
clock-constrained Bayesian MCMC. These operators are
implemented in different software packages and used in
our analysis together with our new operators (cf. Section
II). The purpose of an operator is to propose a new tree
by modifying the current one. An operator is local if the
produced modifications concern a small part of the tree or
global if distant parts of the topology are affected. Existing
operators include:

Narrow Exchange The Narrow Exchange operator [7] ran-
domly selects a node ¢ and exchanges this one with a
second node j that is the sibling of its parent node p.
Ages of the nodes are compared to ensure that the new
tree does not violate the clock constraints (6; < 6,). For
example if j, which becomes a new child of the parent
p, is older than p then this would result in an older child
which is not permitted. Operators which exchange two
nodes, as the Narrow Exchange, are called subtree swap
operators.

Wide Exchange The Wide Exchange operator is a gener-
alization of the Narrow Exchange where the second
node j is chosen randomly [7]. Then, both subtended
subtrees are exchanged if the proposal does not violate
the clock constraints. Since both nodes can be arbitrarily
far away from each other, this subtree swap operator is
considered to be global.

¢NNI The (clock-constrained) Nearest Neighbor Inter-
change (NNI) operator [8] is another extension of the
Narrow Exchange operator where the only difference is
that the node heights are changed too. This expands the
neighbourhood of proposals. A random node is chosen
and exchanged with the sibling node of the parent node.
Finally, the height of the parent is set randomly to a
value between the maximum height of its children and
its parent.

Wilson-Balding The Wilson-Balding operator [9] belongs
to the group of prune and regraft operators. It selects
randomly a node 7 which is not the root and not a
leaf. Then the subtree rooted at ¢ is pruned. A second
node j, which has to be older than the remaining child
of i, is chosen. Next, the previously pruned subtree
is reattached under the second node j. Finally, to be
consistent with clock-constrained trees, the node height
of 7 is adjusted randomly between its new parent j and
its new children.

Subtree-Slide The purpose of the Subtree-Slide operator is
primarily to change the branch length rather than to
propose a new topology. Operators using this technique

are called branch-change operators. Nevertheless, this
operator can make changes to the topology (mostly
local) as a side-effect of large node height moves. First,
a node is randomly chosen. Then, a path from the root
to a leaf passing this node is selected. Finally, the node
is slid a certain distance on the path in one direction,
either towards the root or towards the leaf. The effect of
this operator is similar to the LOCAL operator proposed
by Mau et al. [10], [11] and Larget and Simon[12].

C. Related Work

The standard operators are implemented in different soft-
ware packages as PAML [13], Batwing [4], LAMARC [5],
Migrate [6], MrBayes [14], [15] and BEAST [3]. Yet, in most
of the available software packages only a different subset of
the known operators is implemented. Furthermore, no one
has yet compared all these operators for clock-constrained
trees, although an analysis is essential to answer which
operator should be favoured [8]. We note that Lakner et al.
[16] discussed this problem but only for unrooted trees. Our
framework is similar to theirs in terms of the datasets and
of the convergence diagnostic we used. However, inasmuch
as they studied unrooted trees and therefore they used non
clock aware operators, their results can not be extended easily
here. Lakner et al. concluded that global operators perform
better than local ones. They showed that extending the global
operators with a bias favouring local proposals increases
the performance. Furthermore, a branch-change operator, in
their case the “LOCAL and Continuous Change operator”,
were performing worst in their tests. In Section IV, we will
compare these statements to our results.

II. NEW TREE PROPOSAL OPERATORS

In this section we introduce two new operators that we
implemented in the open source project beast-mcmc [3].

Intermediate Exchange The Intermediate Exchange oper-
ator is intermediate between the Narrow and Wide
Exchange operators. It can be considered as an adapted
Wide Exchange where the second node is not chosen
uniformly. Instead, the selection process is given a bias
to prefer local nodes with a higher probability. The
probability that a node gets selected as the second
depends on its path length to the first node. The shorter
the path, the higher the probability (see Fig. 2). Let ¢
denote the first node, j the second node and [;; the
path length between them in the current tree, then the
probability of choosing j given 7 is:

Lij
P(j) = w2 1)
> lik
k=1

where n; are all possible nodes to swap from ¢ consid-
ering the node height constraint. Since this operator is



not symmetric we need to compute the Hastings ratio:

1 + 1
Zi lzk ZJ ljk
k=1 k=1 2)
OH = —1 T 1 (

nj
lik Z ljk
k=1

where n; are all possible nodes which j can swap to,
n} is the set of nodes 7 can swap to after the proposal
and n; respectively.

Fixed Nodeheight Prune and Regraft The FNPR prunes
a subtree and reattaches it without changing any node
heights. Hence, the FNPR is a subset of the Wilson-
Balding operator. It selects randomly a node i which is
not the root and not a leaf. Then the subtree rooted at 7
is pruned. A second node j with its parent node jP is
chosen, where j has to be younger and jP older than
i (0; < 6; < 6;p). Next, the previously pruned subtree
is reattached at the branch above j (see Fig. 2).

For the FNPR we do not need to define the Hastings
ratio since this operator is symmetric.
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Fig. 2. Top: A proposal of the Intermediate Exchange operator. The left
figure shows the possible nodes to swap if node C was chosen first. The
second figure shows the tree after the swap and the path length I. Bottom:
A proposal of the FNPR operator. The left side shows the tree before the
topology change and the right side afterwards.

III. MEASURING EFFICIENCY OF TREE PROPOSAL
OPERATORS

A. Convergence Diagnostics of MCMC runs

In Bayesian MCMC for phylogenetic inference the target
distribution is the posterior probability distribution on trees.
After an unknown amount of time, the distribution of the
samples of the Markov chain corresponds, within a small
error, to the target distribution. Estimating the performance
of an MCMC algorithm is a difficult problem and it can be
reformulated as the question: “How long does the MCMC
algorithm takes to provide an estimate of the posterior within
a certain error tolerance?”. There are a number of methods
for checking the convergence of an MCMC run, see for
example [17] for a discussion about different convergence di-
agnostics. In this paper the convergence diagnostic of MCMC

runs relies on a similarity measurement between the sampled
distribution and the target distribution. However, instead of
comparing the posterior distribution of trees directly, the
marginal probability distribution on subtrees is used [8][16].
Each subtree is separated from the remaining tree by a
particular branch. In an unrooted tree, this branch defines
a bipartition (or split) of the taxa while in rooted trees it
defines a clade, i.e. a particular subset of the species, without
regard for the relationships within the subset. The marginal
probability distribution of clades is a good proxy for the full
distribution on trees since each rooted tree is defined by a
compatible set of clades. We call C' the set of possible clades.
The advantage of using the clade probabilities instead of the
posterior distribution on tree topologies is that the number
of possible clades is much smaller than the number of trees.
Hence, fewer samples are needed to obtain accurate estimates
of clade probabilities. Moreover in evolutionary biology, the
clade probabilities are often the statistics of interest. For each
clade ¢, it is possible to compute the absolute difference
between the clade frequency s. in the sampled distribution
and the clade frequency ¢, in the target distribution. We call
§ = rcnax(lsc — tc|), the maximum deviation of the clade

frequencies, c¢f. Fig. 3a. It should be noted that in practice the
“true” target distribution of clades is unknown and in order
to estimate this distribution a classical approach is to perform
a set of extensive MCMC runs, the so-called “golden runs”.
Each “golden run” is actually an extremely long MCMC
chain and therefore it produces samples which distribution
reflects as accurately as possible the true target distribution.

Once the target distribution of clades is accurately es-
timated, it is then possible to monitor the convergence
of any given MCMC run by computing the evolution of
the maximum deviation § after a number of samples are
produced. Based on 4, we propose three different metrics to
evaluate the efficiency of operators: firstly, for a particular
operator, the percentage of MCMC runs that achieve a given
accuracy, i.e. for which ¢ falls bellow a threshold ¢, secondly,
the convergence time, i.e. the average number of steps needed
to reach e for the first time' and lastly the average maximum
deviation § after a limited number of steps. In Fig. 3b the
convergence time and the average maximum deviation o are
illustrated with e equals to one percent and 10 millions of
steps.

B. Datasets and target distributions

Three small synthetic datasets have been simulated. Three
phylogenetic trees were constructed with respectively 6, 8
and 10 species according to a Yule process with a birth rate
of one [3]. Then, given those tree topologies and branch
lengths, we generated a random DNA sequence and applied
mutations by simulating the process of evolution using the
software Seq-Gen [18]. We fixed the sequences length to
40 nucleotides, the average number mutations per site to
0.05 and the F81 substitution model [19] was used. We
first verified that every operator was able to sample the

TAll operators have a similar computational time.
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Fig. 3. Part a: An example of sampled and target distribution of clades where the maximum deviation is obtained for clade number 3. Part b: Evolution
of the maximum deviation for a typical run and of the average maximum deviation § over 100 runs. From this analysis, the number of converged runs,
the number of iterations needed to converge and the average maximum deviation of clade frequencies can be extracted.

TABLE 1
WEIGHTS OF THE TWO DIFFERENT MIXTURE OF OPERATORS. THE NUMBER OF TIME EACH OPERATOR IS APPLIED IS PROPORTIONAL TO THE WEIGHT.

Mixture Narrow Exchange NNI  SubtreeSlide Intermediate Exchange Wide Exchange FNPR  Wilson-Balding
Original (Default Settings) 15 - 15 - 3 - 3
All (New Proposed Setting) 10 10 10 5 3 3 3

whole set of 905 possible tree topologies on the 6 species
dataset. We then performed ten full MCMC analyses on
each synthetic dataset using the software BEAST [3] with
the default mixture of operators (cf. Table I) and predefined
standard settings. We verified that the original simulated
true tree was present in the 95% credible set of trees.
Finally we compared the ten sampled clade distributions
and found that they were no more than plus or minus
0.02% different. We claim that these analysis are sufficient
to prove the correctness of our implementations and validate
the “golden run” approach. Another approach to obtain the
posterior distribution is to calculate the marginal likelihood
for every tree topology. The ratio of the marginal likelihoods
is expected to be the same as the ratio of the samples
per topology. To confirm our approach with this one we
calculated the marginal likelihoods of the smallest dataset
with 905 different topologies. The results agree with our
claim but the details are beyond the scope of this paper.
For a more realistic evaluation, we used 11 datasets
containing real data, ¢f [16]. The datasets range from 27
to 71 species and from 378 to 2520 nucleotides, see Table
I1. For each dataset, ten very long runs, with the predefined
standard settings of BEAST were performed. Each run had
100 million iterations with samples every 1000 iterations,
which is by far longer than the usual analysis. We observed
that the maximal estimated error was below 0.8% (as shown
in Table II). It is not expected that the estimated error
increases proportional to the size of the dataset. Furthermore,

the distribution of trees with high posterior probability has a
large impact on the error. The consensus of the ten runs were
taken as the “golden runs” which gave the target distributions
in our evaluations.

C. Experiments

For each dataset and for each of the seven operators
described, we performed 100 runs of 10 million iterations
starting from different random trees. In each run a sample
tree was taken every 100 steps and every operator was
executed the same number of times. In addition, we eval-
uated the performance of a mixture of four operators pre-
defined in BEAST and a new mixture including all seven
operators together (see Table I). We created the new mixture
according to the properties of the operators keeping the
balance between the local and global operators but without
further optimization. We note that for all experiments, we
used an additional scaling operator to change the node
heights. Indeed most of the operators do not alter the node
heights, so they can not sample the whole state space when
used alone. To assess the convergence of MCMC runs, the
threshold ¢ was set to 1% for the maximum deviation of
clade frequencies 9.

The three metrics introduced in section ITII-A were used to
evaluate the performance of the seven operators and of the
two mixtures. In Fig. 4, we give the counts of the number of
converged runs (6 < 1%) before 10 million iterations. We see
that the two mixtures report the best results. More precisely,

le+07



TABLE 11
DETAILS OF THE THREE SIMULATED DATASETS AND OF THE ELEVEN REAL DATASETS USED IN THIS STUDY.

Dataset Number of Species Number of Nucleotides Type of Data TreeBase Estimated Error (in %)
S1 6 40 Simulated dataset with 6 Species - 0.01
S2 8 40 Simulated dataset with 8 Species - 0.02
S3 10 40 Simulated dataset with 10 Species - 0.02

DS 1 27 1949 rRNA, 18s M336 0.44
DS 2 29 2520 rDNA, 18s M501 0.06
DS 3 36 1812 mtDNA, COII (1 -678),cytb (679 -1812) M1510 0.16
DS 4 41 1137 rDNA, 18s M1366 0.21
DS 5 50 378 Nuclear protein coding, wingless M3475 0.77
DS 6 50 1133 rDNA, 18s M1044 0.17
DS 7 59 1824 mtDNA, COII and cytb M1809 0.05
DS 8 64 1008 rDNA, 28s M755 0.10
DS 9 67 955 Plastid ribosomal protein, s16 (rps16) M1748 0.18
DS 10 67 1098 rDNA, 18s MS520 0.74
DS 11 71 1082 rDNA, internal transcibed spacer (ITS) M767 0.25
Operator \ Data Set S1 DS 10 | DS 11
All

Original

FNPR

IntermediateExchange

NarrowExchange

NNI

SubtreeSlide

WideExchange

WilsonBalding

0%

50% 100%

Fig. 4. Percentage of converged runs (§ < 1%) starting with random trees and for a maximum of 10 million iterations. Constitutions of the mixtures

“All” and “Original” are given in Table 1.

for datasets DS3, DS6, DS7 and DS8, a binomial test of the
percentage of converged runs has shown that the new mixture
performs significantly better than the original one (i.e. the
mixture “All” has 83% converged runs for DS6 whereas the
mixture “Original” has only 42%). The two local operators,
i.e. NNI and Narrow Exchange, are the only operators able
to report comparably good results when used alone, while
the remaining five operators demonstrate comparatively poor
results. We note that no experiments successfully tackled
the datasets DS1, DS5 and DS10. This result was actually
expected since for these 3 datasets a high estimated error
was found (cf. Table II) and so the target clade frequencies
were not estimated properly. Further studies of these three
difficult datasets have shown that they contain islands of trees
with high posterior probability. The islands are separated
by several NNI transformations. Therefore the MCMC runs
spent more time in part of the tree space until they move
to another part. Hence, runs with the same number over
iterations are varying more in their results and the estimated
error is larger.

In Fig. 5, the number of iterations needed to reach the
threshold accuracy is used as a measure of performance on
the simulated dataset S3 where S3 was arbitrary chosen. The

boxes show the central 50% and the whiskers the maximum
and minimum values. The operators are ranked according to
their performance on this dataset. We performed this test
for all other datasets where just minor variations in the
performance of the operators was observed. The results here
are in accordance with the percentage of converged runs.
The evolution of § on dataset DS8 is plotted in Fig.
6. While the two mixtures display a fast and accurate
convergence behaviour, the two local operators, NNI and
Narrow Exchange are the worse operators according to this
metric. Since we have seen in Figure 4 that the number of
converged runs is reasonably high on this dataset for these
operators, we have suspected that a reduced number of runs
have found extremely bad estimates of the clade frequencies.
This assumption was confirmed by looking at individual runs.

IV. DISCUSSION

Two new operators for clock-constrained trees have been
introduced and evaluated. The FNPR is a global prune and
regraft operator and therefore it should be compared with
the Wilson-Balding operator. The performance of these two
operators are indeed similar but in terms of number of
converged runs the FNPR outperforms the Wilson-Balding
operator. The Intermediate Exchange operator is comparable
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Fig. 6. Evolution of the average maximum deviation & from the target clade frequencies on dataset DS8.

to the Wide Exchange but is much more robust in terms of
average maximum deviation. A summary of the operators is
provided in Table III. Local operators are generally faster
in computation and have a higher acceptance rate but they
are more likely to get stuck in a local part of the tree
space. Nevertheless, in our study single local operators have
a higher mixing efficiency than single global operators and
there is no dataset which clearly uncovers a deficiency in the
best local operators. The comparison of the prune and regraft
operators with the subtree swap operators has shown that

the prune and regraft operators should be favoured. Another
characteristic for the operators is whether they change the
node heights or not. The FNPR, which does not change
the node heights, performs better than the Wilson-Balding
operator, which changes the node heights and tree topology
simultaneously. Hence, separating the topology change and
the branch length change seems to achieve better efficiency.

We conclude from our study that none of the operators
performs reliably when used alone. A mixture of several
operators proved to be more robust and provides better



TABLE III
CHARACTERISTICS OF THE SEVEN OPERATORS.

Operator  Changes on Topology Affect on Tree Branch Length  Proposal Technique Rank

Narrow Exchange Direct Local Preserved Subtree Swap * 1
NNI Direct Local Changed Subtree Swap * 1

FNPR Direct Global Preserved Prune and Regraft 3

Wilson-Balding Direct Global Changed Prune and Regraft 4
Intermediate Exchange Direct Global Preserved Subtree Swap 5
Wide Exchange Direct Global Preserved Subtree Swap 6
Subtree-Slide Side Effect mostly Local Changed Branch Change 7

performance than any single operator. Further, adding our
newly developed operators, FNPR and Intermediate Ex-
change, to the mixture of the operators increases the average
performance, as evaluated by the data sets we analyzed. We
therefore hypothesize that these mixed proposal distributions
are less likely to fail on an unknown dataset. However finding
the most efficient mixture, in terms of how much weight each
operator should have, will need further investigation.

V. CONCLUSION AND FUTURE WORK

Our results show that the conclusions of [16] on unrooted
trees can not be directly extended to clock-constrained trees.
Since none of the available software packages have been
analysed in a comparable way before, there is a lack of
systematic evaluation of clock-constrained tree operators
for phylogenetic inference. Therefore, this work should be
seen as an initial step towards a systematic validation and
evaluation of such operators. In this paper we have already
demonstrated an improvement in the mixing efficiency of
the software BEAST, and we believe that more generally this
work will also improve our understanding of the convergence
of the phylogenetic MCMC algorithm in practice.

The operators we used are unguided by the data. They
have the advantage that they are very fast and easy to
compute. But they do not use knowledge of the data to
inform their choice of newly proposed trees. In practice,
they all propose low-probability trees more often than high-
probability ones and the average quality of the proposals,
especially for operators with a large neighbourhood like the
Wide Exchange, is very low. This problem can be overcome
using Gibbs Sampling [20] and Data Driven MCMC [21].
A short pre-sampling step could be used to obtain clade
probabilities which then could give weights for each possible
proposal. We plan on investigating such alternatives within
the framework developed in this paper.
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