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We review and develop Bayesian statistical methods for recovering genealog-
ical structure, population size and mutation rates from radiocarbon-dated fossil
mtDNA sequence data. It is possible to obtain ages for fossil DNA sequences and
their common ancestors, by fitting a population-genetic model. We describe the
observation model and show how uncertainty in reconstructed parameter values
may be quantified via sample-based inference. We give an example, in which
errors arising from radiocarbon calibration of fossil sequences are dominated by
uncertainty in the genealogy and associated population parameters. We do not
discuss likely model mispecification in any detail.

1 Introduction

The remarkable thing about using genetic material to date events, is that it is possible at
all. There are two clocks in the story, one ticks at the mutation rate of DNA, the other at
the coalescent rate of ancestral lineages. We know the rate constant for neither clock. We
seem to be pulling ourselves up by our bootstraps, obtaining rates and dates from the one
data set. It turns out that in fact we cannot date without some prior knowledge of the likely
value of the date we wish to estimate. However, only very limited information is needed,
as we show. In this paper we review recently published statistical methodology for genetic
dating. Our explicit treatment of the uncertainty arising from imprecisely dated sequences,
Section 6, is new, as is our characterization of the limitations of genetic dating, presented
in a couple of highlighted paragraphs in Section 4.

What are we dating here? We can estimate an age for the common ancestor of the individuals
whose DNA makes up the data. The amount of divergence between the DNA sequences of
the sample individuals is a measure of that age. We can also estimate the time at which
an individual lived, if we have an undated DNA sequence from the individual, along with
dated sequences from other individuals in the same population. In Drummond et al. 2002,
the authors date modern-day events, using HIV sequence data, with ages known to the day.
Where radiocarbon dating is used to date fossil DNA, as in Lambert et al. 2002, analysis
to date has been conditioned on point estimates of calibrated dates. This seems to be an
unimportant approximation as we show below.

What archaeological questions can we answer? We can provide estimates of dated genealo-
gies, and in some simple cases, an estimate of the way the total population size has varied as
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a function of time. It is possible that direct genetic dating of fossil DNA sequences (see Sec-
tion 8 and Figure 6) may in the future be used to make very crude temporal classifications,
along the lines of “ancient or modern?”. However, care must be taken when gene-derived
dates are used to infer cultural history. Where this link is needed, an explicit case must
be made. The argument is typically based on archaeological context, but may follow from
statistical considerations, as in Penny et al. 1993, who discuss the parallel genealogies of
human languages and human genes. The genealogies of domestic animals and human and
animal diseases may be of independent interest, whilst recent contact between human com-
munities may potentially be resolved by the viruses shared by those communities, since
viruses evolve at a much higher rate than their hosts. In Matisoo-Smith et al. 1998, the
genealogy of polynesian rat mtDNA reveals prehistoric patterns of human mobility in East
Polynesia. Underhill et al. 2001 develop a model of human contact in the wider Pacific
from Y-chromosome data for Pacific peoples. Before sequence data were available, ancestral
inference, in archaeology as in biology, was based on higher-level trait-based data. Ammer-
man and Cavalli-Sforza 1984 consider the mesolithithic-neolithic transition in Europe in the
light of blood type and other trait-based data. The citations in this paragraph reflect the
authors’ personal interests.

We focus on recent developments in statistical methodology. Data-analytical tools, devel-
oped in the last decade, allow us to put error bars on the dates and rates reconstructed from
sequence data. This is not trivial as we don’t usually know how the sample specimen are
related. Kuhner et al. 1995 used MCMC to average over genealogies and obtain an ML-
estimate for one of the two rate parameters of the problem, if the other is known. Model
averaging of this kind is computationally demanding, but statistically robust. Kuhner et al.
1995 suppose all data sequences have equal age. Importance sampling methods are used to
get estimates at parameter values which were not simulated. This proved to be a weakness
of the method, as the importance weights can have high variance. The Bayesian analy-
sis given below uses MCMC to average genealogies and rate parameters simultaneously,
from sequence data gathered at different times. Whilst MCMC methods have their own
weaknesses, and must be used with care, they have certainly extended the range of reliable
population-genetic inference. As we explain below, the output of our simulations may be
used to form ML-estimates, if so desired.

The methods described below were applied in Drummond et al. 2002, to estimate the
parameters of an HIV population, and in Lambert et al. 2002, to estimate the age of the
common ancestor of a collection of fossil Adelie penguin bones. In earlier work, Rambaut
2000 starts with a maximum likelihood phylogeny with time-stamped sequence data at
the leaves and estimates the mutation rate. This kind of analysis, which dates back to
Felsenstein 1981, is not robust, but is convenient for exploratory work. Barnes et al. 2002
estimates the genealogy of time-stamped fossil bear sequences via parsimony.

Bayesian inference is new to population genetics, where the Kingman coalescent provides
an “inevitable” prior on genealogies. Wilson and Balding 1998 and Beaumont 1999 are
early examples, treating micro-satellite data. Wilson et al. 2003 overlaps with Drummond
et al. 2002. Phylogenetic tree priors are more obviously subjective. Perhaps for that reason,
Bayesian methods are more common in that arena. See for example Suchard et al. 2001
and references therein.

In this paper we lay out the methodology in the context of a model of asexual reproduction.
The cells of sexually reproducing creatures contain mitochondrial organelles, which behave a
bit like cells within cells. Mitochondria carry their own DNA, and that mtDNA reproduces
asexually, following the maternal line. It follows that the methodology we lay out below can
be used to date events in the maternal ancestral tree of creatures which reproduce sexually.
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2 The Mutation-Clock

The mutation model described in this section is the (standard) independent neutral finite-
sites mutation model of Felsenstein 1981.

Consider an L-site DNA sequence. For s = 1, 2 . . . L, and C = {A,C, G, T}, let Bs ∈ C
denote the character at site s. When the organism reproduces, the DNA sequence is copied,
site by site. At each copy event, there is a small chance that a copy error may occur.
We will assume these errors are independent but identically distributed from one site to
another. Consider the probability that an X mutates into Y at one site in the course of a
single generation. A generation is a very short time compared to the timescale at which we
want to work, so we will write this probability in terms a dimensionless relative-rate matrix,
QX,Y , a mutation rate parameter µ, with units mutations per year, and ρ, the number of
years per generation. If X 6= Y , the probability for the event is µQX,Y ρ. Consider what
happens over many generations. Let B denote an ancestral sequence and B′ a descendant
sequence, and suppose the two sequences are separated by an interval of time t much larger
than ρ. If we can ignore terms of order ρ/t, the probability Pr{B′

s = Y |Bs = X} to get a
Y at site s in B′, given there was a X at site s in B is

Pr{B′
s = Y |Bs = X} = [exp(µQt)]X,Y

The exponential function of the 4×4 matrix Q is defined by the exponential series exp(M) =
1 + M + MM/2! + MMM/3! . . ., where 1 is the 4 × 4 identity, and MM is just matrix
multiplication. Notice that when t gets small we can approximate Pr{B′

s = Y |Bs = X}
by the matrix 1 + µQt. The off-diagonal elements are just what we started with, µQX,Y t.
The row sums of 1 + µQt should be one (it’s a transition probability), so we need QX,X =
−∑

Y 6=X QX,Y for the diagonal elements of Q.

In the following we will suppose, without further discussion, that all the entries in Q are
known. In fact we can estimate those relative rates from the data along with all the other
unknowns treated here. When the absolute rate µ is high, there are plenty of mutations,
so the data pins down relative rates fairly tightly. Drummond et al. 2002 show that this
works for real data.

Now, if we knew the ancestral sequence B, the final sequence B′ and the mutation rate
µ we could estimate the time t between the initial sequence and the final sequence. The
likelihood for t would be

Pr{B′|B, µ, t} =
L∏

s=1

[exp(µQt)]Bs,B′s
. (1)

We do not have the ancestral sequence B, but we do know something about B, even before
we see B′. The sequence B has itself evolved from a sequence of great antiquity. The
proportions of A’s, C’s, G’s and T ’s in B are determined by the relative rates, QA,C etc,
at which these bases mutate into one another. It follows that each character in B is a
draw from the equilibrium of the mutation process. Let π = (πA, πC , πG, πT ) denote this
equilibrium distribution (so, πQ = 0). Since the mutation process acts independently at
each site, the probability distribution for B itself is Pr{B} =

∏
s πBs .

Of course, knowing B is a draw from the equilibrium of the mutation process doesn’t help
us pin down t. The likelihood obtained by summing out the unknown B gives us back the
equilibrium distribution for B′, independent of t. We need to know more about B and we
can learn that by looking at its other descendants.
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3 The Coalescent-Clock

The continuous time model described in this section, called the Kingman coalescent, is de-
scribed in two classic papers, Kingman 1982a and Kingman 1982b. The process is extended
to serial times in Rodrigo and Felsenstein 1999.

Consider a population of Ne individuals reproducing asexually. We will assume that the
population size is constant in time (this assumption may be replaced by any other assump-
tion which reasonably restricts the set of allowed population size histories, for example, to
exponential growth at an unknown rate). Consider a pair of generations, and suppose the
i’th individual in generation one produces ni offspring in generation two. We model the
evolution of a genealogy in the following way. We suppose each individual in generation two
chooses its parent uniformly at random from the individuals in generation one, and indepen-
dent of the choices made by its peers in generation two. This model, which is equivalent to
imposing a multinomial distribution for the vector (n1, n2, . . . nNe) of family sizes, is called
the Wright-Fisher population model.

In order to simulate K − 1 generations of an ideal Wright-Fisher population, take a piece
of paper and mark a square lattice of dots, Ne dots across by K dots up. See Figure 1.
Connect each dot by a directed edge pointing to a randomly chosen dot in the row above.

Wright−Fisher population

M=20

Wright−Fisher genealogy

t=ρ × M

Coalescent genealogy

Figure 1: The Wright-Fisher and Kingman coalescent processes, with generation time ρ.
(left) K = 40 generations of a Wright-Fisher population of Ne = 20 individuals, (center) the
ancestral lineages of contemporary individuals 5 and 15 in the population at left coalesce
M = 20 generations back, (right) the continuous time coalescent tree summarizing the
discrete time ancestry in the centre.

The “present” generation is the row at the bottom of the page, and the earliest is the row
at the top. A directed edge leads away from each dot in the array. A lineage is a directed
sequence of edges.
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Now pick two individuals from the population in the present without reference to their
ancestry (ie pick two dots from the bottom row without looking at the edges connected to
them). Consider the number, M say, of generations back to their first common ancestor. The
Wright-Fisher model determines a geometric distribution for M , so that Pr{M = m|Ne} =
p× (1− p)m−1 with p = 1/Ne (p is the probability two individuals have a common parent
in the previous generation, so p(1− p)m−1 is the probability the lineages don’t coalesce for
m − 1 generations, and then do coalesce in the m’th). Notice that the mean number of
generations back to the common ancestor of two individuals in the present is just Ne, the
population size.

When Ne is large, the distribution of the time t back to coalescence is well approximated
by an exponential. Recall ρ is the number of years per generation. Let λ be the rate, with
units coalescent events per year, defined by p = λρ. Now m generations is t = mρ years,
so when 0 < ρ ¿ t and Ne À 1, we have (1 − 1/Ne)t/ρ ' exp(−t/Neρ) and t ∼Exp(λ).
Readers familiar with population genetics should note that our λ (which equals 1/(Neρ)) is
equivalent to the expression “1/Θ” found elsewhere in the literature.

Now consider what happens if we select not two, but n individuals. Also, we may select
individuals from different generations. The ancestral lineages form a tree, with n leaf nodes
and n − 1 ancestral nodes, corresponding to n − 1 coalescent events. At the root of the
tree is the node corresponding to the most recent common ancestor of all n individuals at
the leaf nodes. As we trace back from the present to the root, the lineages arising from the
leaves coalesce one by one until there are just two lineages, which coalesce at the root. The
common ancestral tree of n individuals is called their genealogy, and denoted g. It is a tree
graph with distinguishable leaf vertices. The tree is drawn upside down, so that the altitude
of a vertex is proportional to its age.

The coalescent process we have described determines a probability distribution for g, that
is, a probability density for the joint distribution of the tree coalescent times and topology.
If we follow any particular pair of lineages back in time, and ignore the rest, the pair we
are following behave according to the rule we worked out for n = 2: they coalesce at
instantaneous rate λ. With this one rule (and a bit of notation) we can write down the
probability density for any particular tree g. As we trace back from the most recent leaf to
the root, the number of lineages decreases by one at each coalescent event, and increases
by one at each leaf. The number of lineages is a constant in each interval of time between
consecutive vertices of the tree.

Imagine simulating the tree from its leaves up to the root. Number the vertices of the tree in
order by age from i = 1 up to i = 2n−1 at the root and assign the vertices ages ti. Suppose
ki lineages are present in interval [ti, ti+1). The rate Ri for coalescent events in interval i is
a constant, Ri = ki(ki − 1)λ/2 (the number of distinct pairs multiplied by the rate for each
pair). If interval i ends with a coalescence event then its length, τi = ti+1 − ti say, is an
exponential variate with mean 1/Ri. The pair of lineages which coalesce at the top of the
interval is chosen from ki(ki−1)/2 pairs, so the probability density for that coalescent event
was λ exp(−Riτi). If interval i ends with a leaf then there was no coalescence event in that
interval, and that happens with probability exp(−Riτi). These events are independent so
the probability density fG(g|λ) for the whole tree is a product. Each interval contributes a
factor like exp(−Riτi) and the n−1 intervals terminated by coalescent events each contribute
an extra λ factor. The probability density for the joint distribution of tree coalescent times
and topology is then

fG(g|λ) = λn−1
2n−2∏

i=1

eλ
ki(ki−1)

2 (ti+1−ti). (2)
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Return to the comments at the end of Section 2. The mutation model gives us a likelihood
for the age of an organism if we knew something about the DNA sequences of that organism
and its descendants, and the mutation rate. Evidence for the DNA sequence of the ancestral
organism is obtained by putting the DNA sequences of its descendants together with prior
information about the likely tree structure. The Wright-Fisher population model determines
a prior for trees. So, we can expect to be able to date coalescent events, if we have DNA
sequences for individuals at the leaves of the genealogy, and know the two parameters µ and
λ. Can we reconstruct and date a genealogy from the DNA sequences of its leaf individuals
if we have the prior and observation models, but the two rate parameters and the genealogy
itself are unknown?

4 Inference for rate parameters

In this section we write down the posterior probability distribution for those unknown
parameters of interest which may be estimated from the sequence data of n individual
organisms. Exact sequence ages are assumed. We defer treatment of radiocarbon calibration
to Section 6.

It is convenient at this point to drop the time ordering of vertex labels in g. We will want
to make small independent changes to the ages of vertices of g, and we would like them to
keep their names as we vary their ages. Let I [Y ] denote the set of leaf [ancestral] node
labels. Let t(g) = (t1, t2 . . . t2n−1) where ti is the age of vertex i in genealogy g. Split the
vector t(g) into two vectors, tI = (tI1 , tI2 . . . tIn) and tY = (tY1 , tI2 . . . tYn−1). Let R ∈ Y
denote the label of the root node. Let E(g) denote the edge set of g, with the convention
〈i, j〉 ∈ E(g) ⇒ ti ≥ tj . A genealogy is determined by its edge set and vertex times,
g = (E, t). Let B be a (2n− 1)× L array of DNA characters. A row of B corresponds to a
DNA sequence. Let Bi,: denote the ith row of B and Bi,s ∈ C, (C = {A,C, G, T}) denote the
character at site s in the DNA sequence for vertex i. Let BI and BY denote the sub-arrays
of leaf and ancestral node sequences respectively.

We can think of the coalescent process, which determines the tree-genealogy g, as laying
down the railway tracks, along which the mutation process runs. The root sequence is
drawn from the equilibrium of the mutation process. The transition probability Pr{Bj,s =
b|Bi,s = a, µ, ti − tj} of Equation (1) carries the sequence down from one node to the next
down the tree. The probability Pr{BI , BY |g, µ} for the mutation process acting over tree g
to generate ancestral sequences BY and leaf data BI is then

Pr{BI , BY |g, µ} =
L∏

s=1

πBR,s

∏

〈i,j〉∈E(g)

[
eQµ(ti−tj)

]
Bi,s,Bj,s

. (3)

Our data D are the n dated sequences D = {ti, Bi,:}, i ∈ I. The tree topology, E, the
n− 1 undated sequences {tj , Bj,:}, j ∈ Y and the mutation and coalescent rate parameters
µ and λ are unknown. Let x = (µ, λ,E, tY , BY ) denote the set of unknowns in this problem.
Our inference is based on the posterior probability density fX|D(x|BI , tI). Suppose a prior
density p(µ, λ) is given. We write the posterior as a product of the conditional probabilities
determined by the mutation and coalescent processes,

fX|D(x|BI , tI) ∝ Pr{BI , BY |g, µ} fG(g|λ) p(µ, λ). (4)

Note that we write g where E, tI and tY appear together.
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We now discuss the problem of deciding a prior for µ and λ. This is a density on just two
variables, both of which are scale parameters. There should be little mystery in the business.
The difficulties treated below arise because we choose to illustrate our methods for a diffuse
prior, so we take a paragraph to justify this choice. First, we wish to establish sampling
methodology, and the MCMC sampling problems we consider become more difficult as we
use a more diffuse prior. Secondly, any careful Bayesian inference must make some model
sensitivity analysis, and a straightforward way to do this is to probe the data with more and
less informative priors. For that reason the diffuse priors we consider here may be of use in
a more informed analysis. Thirdly and finally, naive application of a diffuse prior leads to
an improper posterior for the parameters of interest. It is useful to warn against this error,
and to identify readily available scientific knowledge which is sufficient to fill the gap.

In Drummond et al. 2002 we show that a fairly straightforward MCMC scheme is adequate
for inferential problems of real interest. Earlier work (Kuhner et al. 1995) treated the
estimation of λ and g if µ was known, and of µ and g if λ was known. Drummond et al.
2002 estimate µ, λ and g jointly, a substantially harder problem.

Joint estimation is not possible if the data are exactly contemporaneous, that is, if ti = tj for
all i, j ∈ I. Shift the zero of time so that ti = 0, i ∈ I and fix a real constant c > 0. Consider
Equation (4) and the transformation x → cx defined by cx = (µ/c, λ/c, E, ctY , BY ). The
rates go down as the tree depth goes up. The factors Pr{BI , BY |g, µ} and fG(g|λ)dn−1tY
are invariant under this transformation. The only c-dependence left in the posterior is in
the prior distribution for µ and λ. In other words, the data tells us nothing about c that we
didn’t already know. Here is another way to think about the problem. The transformation
x → cx does not scale the leaf node times, just the ancestral node times, so it is not in
general simply a change in the units of time. However, for equal-time leaves x → cx is
indistinguishable from a change of units for time since the leaves are at time zero, and c
times zero is zero.

This argument does not go through when leaf vertices are not all contemporaneous. In
Equation (4), c does not cancel in factors involving edges connecting leaf and ancestral
nodes. The time offset between leaves makes one time scale special, and time-scale invariance
is lost in Equation (4). However, although the qualitative property of identifiability is
present whenever leaf times are not exactly contemporaneous, we can expect a great deal of
uncertainty in the scale factor c when the leaf spacing is slight. In particular, if we take c
very large, the spacing between leaves is small compared to the time scale for events in the
tree, and the identifiability problem present for equal time-leaves reappears.

Warning The posterior density fX|D of Equation (4) is improper for p(µ, λ)
proportional to 1/(µλ).

The warning tells us that “naive” non-informative inference is not possible for the joint
estimation of µ, λ and g. A proof of this result is given in Appendix A. The basic problem
is that the factors Pr{BI , BY |g, µ} and fG(g|λ) do not go to zero sufficiently fast as c →∞
to yield a finite integral over g, µ and λ.

What state of knowledge does determine a proper posterior? Of course this is in a certain
sense straightforward. Any proper p(µ, λ) will do the job and in most applications a very
little elicitation will determine such a prior. However, as we mentioned above, it is useful,
for the purpose of sensitivity analysis, and for challenging MCMC algorithms, to consider
very diffuse priors. It is appealing to biologists to allow states at µ → 0 and λ → 0, at least
in exploratory analysis. However, a conservative bound t∗R on the maximum age of the root
was readily approved.
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Bj,s Bk,s

Bi,s

Figure 2: A subtree with characters Bi,s, Bj,s, Bk,s at site s of the sequences at vertices i,
j, and k respectively.

Encouragement Suppose the data BI contains at least two non-identical
sequences. Let positive constants µ∗, λ∗ and t∗R be given. The posterior density
fX|D of Equation (4) is a proper probability density if p(µ, λ) is proportional to
1/(µλ) and the conditions µ < µ∗, λ < λ∗ and tR < t∗R apply.

This result is established in Appendix B. Why is it worth stating? We saw that integration of
fX|D along any ray {(µ/c, λ/c, ctY ); c > 0} is undefined. Divergences arise in two additional
limits, µ →∞ and λ →∞. These wildly unphysical states cause problems. Firstly

lim
µ→∞

Pr{BI , BY |g, µ} =
L∏

s=1

2n−1∏

i=1

πBi,s .

At high mutation rates there is essentially an instantaneous mutational equilibrium, and the
likelihood goes to a non-zero constant corresponding to the equilibrium base frequencies.
Second, the coalescent density fG(g|λ) concentrates on very short trees as λ →∞, giving rise
to a non-integrable divergence. In terms of the original Wright-Fisher model, λ = 1/(Neρ),
so this divergence arises in the zero population limit. Before we do anything else, we must
eliminate these states, and we do that with µ < µ∗, λ < λ∗. We are now ready to deal
with the divergence along rays {(µ/c, λ/c, ctY ); c > 0}. These rays are truncated by the
root age bound tR < t∗R. Since the space of states is now closed and bounded, any bounded
prior gives a proper posterior, so our encouragement refers only to the scale invariant prior,
1/(µλ).

Notice that a maximum likelihood estimate of λ and µ, from the integrated likelihood surface
Pr{BI |µ, λ}, can be made using draws from fX|D. An estimate of the marginal posterior
surface for µ and λ becomes an estimate of the likelihood surface Pr{BI |µ, λ} (up to an
overall normalization) by simply dividing out by p(µ, λ).

5 Pruning

Before we continue, we note that we have the option, in this inference, to sum out the (typ-
ically) uninteresting unknown ancestral sequences BY and work with state x = (µ, λ, E, tY )
and likelihood Pr{BI |g, µ}. We may compute the sum Pr{BI |g, µ} =

∑
BY

Pr{BI , BY |g, µ}
over all BY ∈ {A,C, G, T}(n−1)×L numerically, without recourse to Monte Carlo, using the
pruning algorithm of Felsenstein 1981. Vertex j is a child vertex of vertex i in genealogy g if
there exists an edge 〈i, j〉 ∈ E(g). Suppose vertex i has child vertices j and k (see Figure 2).
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For a ∈ C, the likelihood Pr{BI |g, µ,Bi,s = a} can be written in terms of the corresponding
likelihoods evaluated at j and k,

Pr{BI |g, µ,Bi,s = a} =
∑

b∈C

[
eµQ(ti−tj)

]
a,b

Pr{BI |g, µ, Bj,s = b} ×
∑

b′∈C

[
eµQ(ti−tk)

]
a,b′

Pr{BI |g, µ,Bk,s = b′}

The likelihood at the root Pr{BI |g, µ,BR,s = a} is defined by a recursion of the above
expression down the tree to the leaves. Let IE denote the indicator function for the event
E . If j is a leaf then j ∈ I and Pr{BI |g, µ,Bj,s = b} = IBj,s=b. There are two sums over
four elements at each level of the recursion. The integrated likelihood is given in terms of
the equilibrium frequencies, π, defined in Section 2, by

Pr{BI |g, µ} =
L∏

s=1

∑

b∈C
πb Pr{BI |g, µ, BR,s = b}.

6 Uncertainty in fossil sequence dates

There is no discussion, in the literature to date, of the likely impact of radiocarbon cal-
ibration errors on genetic inference. However, in paired studies which we omit from the
present work, in which we alternately treat and ignore the uncertainty due to radiocarbon
calibration, we find that the effect is not important (so, for example, Lambert et al. 2002
are correct to ignore the issue). By far the greatest part of the uncertainty in reported ages
comes from the uncertainty in the rate parameters and genealogy (and, no doubt, model
mispecification error). There are around (µL)−1 years (ie, about 2000 years in Section 8)
between mutations on a single lineage. This sets a lower bound on the order of magnitude
of the size of the error bars for all age estimates (both leaves and ancestral nodes) at a value
far above typical radiocarbon uncertainty. However, since mutation rates vary from species
to species, researchers should keep an eye on this source of uncertainty.

In the following we explain how to treat radiocarbon calibration as an explicit part of the
population-genetic inference. For each leaf i ∈ I, let Ti, yi and σi denote respectively the
unknown true age, the conventional radiocarbon age, and measurement error associated with
DNA sequence Bi,:. Let d(τ) denote the radiocarbon calibration curve with age dependent
error σ(τ) as published in Stuiver et al. 1998. We fit the standard radiocarbon observation
model (described, for example, in Buck et al. 1991) for the data yI , that is

yi ∼ d(Ti) + ε(Ti) + εi,

where ε(Ti) ∼ N(0, σ(Ti)2) and εi ∼ N(0, σi) are unknown additive Gaussian noise variates.
In the absence of sequence data, the posterior density fTI (tI |yI) ∝ fYI |TI

(yI |tI)fTI (tI), for
the calibrated ages tI is given in terms of a radiocarbon likelihood fYI |TI

and a prior fTI .

We elicit a prior density fTI as follows. Suppose the effective population Ne(τ) is a function
of age τ . Suppose that age termini A and P are available, so that for i ∈ I, A ≤ ti ≤ P
is prior knowledge, but that otherwise each data sequence Bi,: might equally well belong to
any individual in the population history from P to A. The state of knowledge described
above is, therefore, represented by a prior density

fTI (tI) =
∏

i∈I

Ne(ti)∫ P

A
Ne(τ)dτ
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defined for tI ∈ [A,P ]n (recall, n leaf labels in I). Where λ is estimated as a function
of time, it will be necessary to model the action of taphonomy and specimen selection on
recovered fossil DNA. In what follows we assume Ne is a constant and ignore selection due
to taphonomy. In this setting the above considerations lead to fTI

(tI) ∝ 1, the constant
prior. This form is used throughout the radiocarbon literature, from Buck et al. 1991
onwards. We choose it, in the example which follows, not because we are reaching for some
default, non-informative prior, but because it is computed from a simple explicit model (of
the kind described in Nicholls and Jones 2001) of the processes which realize the parameters
in question. See Drummond et al. 2002 for a discussion of the age-dependent case.

We must modify Equation (4) to take into account the uncertainty arising from the calibra-
tion. Our data D are the n dated sequences D = {yi, Bi,:}, i ∈ I. Let x = (µ, λ,E, tI , tY , BY )
denote the set of unknowns in this problem. The leaf times tI have joined the set of un-
knowns. The revised posterior is

fX|D(x|BI , yI) ∝ Pr{BI , BY |g, tI , µ} fG(g|tI , λ) fYI |TI
(yI |tI) fTI (tI) p(µ, λ) (5)

Notice that undated leaves introduce the possibility of an improper posterior, since the
likelihood for an undated leaf, attached at an age, τ say, greater than the root age tR, does
not go to zero as τ →∞. Some upper bound on the leaf (or root) age must be provided as
prior knowledge. If the data is sufficiently informative it is possible to set this upper bound
to an extremely conservative value. The mass of probability in the upper tail of the age
distribution is then negligible. This is the case in the example of Section 8.

7 MCMC

We have implemented an MCMC algorithm generating X ∼ fX|D. In fact we made three
more or less independent implementations of the entire MCMC scheme. One, in MatLab,
does not represent sequences BY on ancestral vertices, using the above pruning scheme to
eliminate those variables. This first implementation samples the marginal posterior distri-
bution for µ, λ and g obtained by summing BY out of fX|D. A second implementation, also
in MatLab, does represent the ancestral sequences in the state, placing them on an equal
footing with µ, λ and g in the Monte Carlo. A third Java implementation uses pruning.
The multiple implementations were used for checking and debugging, and to investigate the
relative efficiency of pruning. Pruning proved to be particularly helpful at high mutation
rates, where there is real uncertainty in the ancestral sequences.

We describe in Appendix C a collection of MCMC updates for the case where ancestral
sequences are an explicit part of the MCMC simulation. We give details for those updates
which are in our opinion difficult to compute, or interesting in other respects. Updates for
the two implemented MCMC samplers which use pruning are described in Drummond et al.
2002. Updates of the kind discussed below, in particular, updates which treat sequences at
ancestral nodes explicitly, may be found elsewhere, for example, Wilson and Balding 1998
and Wilson et al. 2003. An even more “explicit” treatment may be found in Beaumont 1999,
where individual mutation events are represented. Wilson and Balding 1998 and Beaumont
1999 treat microsatellite data, as opposed to DNA sequence data.

For readers who wish to apply the methods described in this paper to data sets of their
own, the MEPI software

http : //www.cebl.auckland.ac.nz/mepi/index.html

makes the business as straightforward as one could reasonably hope.
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8 Example

By way of example, we consider a synthetic problem set up to resemble the problem treated
in Lambert et al. 2002. We allow for the uncertainty arising from the simultaneous estima-
tion of mutation and coalescent rates and genealogy (µ, λ and g), and from the calibration
of radiocarbon-dated mtDNA sequences. Apart from Drummond et al. 2002, Lambert
et al. 2002 is the only published analysis to take into account uncertainty arising from the
simultaneous estimation of µ, λ and g. We illustrate “genetic dating” of leaf sequences and
common ancestors.

Lambert et al. 2002 treat fossil sequences from penguins. They sequenced the mitochondrial
HVRI region using material from 96 ancient bone samples, up to around 6500 years in age,
and 380 blood samples from modern birds at 13 Antarctic locations. Their analysis is based
on 352 aligned sites in the 96 fossil sequences and an unpublished subset of the modern
sequences. We simulate n = 22 sequences of length L = 400 with no gaps. We leave two
sequences (from the bottom and middle of the genealogy) completely undated, in order
to illustrate genetic dating. The dated sequences in the data allow us to say something
about the unknown ages of the undated sequences. Lambert et al. 2002 do not publish an
estimate of the effective population size. We suppose Ne = 1000, an order of magnitude for
populations of this sort. They assume a generation time of ρ = 5.5 years and estimate a
mutation rate of around 10−6 mutations per site per year.

Let Λ, M, G and TI denote the synthetic true coalescent and mutation rates, synthetic true
genealogy and leaf times. In line with Lambert et al. 2002, we choose Λ = 1/5500 and
M = 10−6. We distribute the 22 true leaf times TI uniformly between the present and
11000BP, and, for i ∈ I, simulate synthetic radiocarbon data yi ∼ fY |T (·|Ti). Synthetic
sequence data is drawn by simulating a true tree G ∼ fG(·|Λ, TI) (see Figure 3 (left side)),
drawing synthetic root characters BR,s ∼ π for each s = 1, 2 . . . L, and then simulating leaf
sequences BI ∼ Pr{·|G,M,BR,:} by simulating the mutation process Pr{Bj,s = b|Bi,s =
a,M, ti − tj} down each edge 〈i, j〉 ∈ E(G) from the root to the leaves. In order to make
the inference proper, we impose upper limits, µ∗ = 1 mutation per site per year, θ∗ = 1/5.5
(so Ne ≥ 1) and t∗R = 40000. Lower limits are all zero. The first two bounds are almost
completely uninformative. In fact the Monte Carlo did not visit any of the bounds. The
posterior probability of states in the vicinity of the bounds is negligible.

We carry out sample-based Bayesian inference, simulating Xk ∼ fX|D, k = 0, 1 . . . K with
K = 5 × 106 using the MCMC scheme of Appendix C. The MCMC is started with a tree
drawn from fG, the coalescent prior. A tree g, sampled from the posterior (simply the last
tree in the run) is shown in Figure 3 (right side). The MCMC output for the slowest mixing
statistic (that is, the state function h(x) with the greatest integrated autocorrelation time)
can be seen in Figure 4 along with its autocorrelation function, and its large-lag asymptotic
variance (±2σ). The run contains about 400 effective independent samples. For details of
these convergence diagnostics, see Geyer 1992.

In Figure 5 we present scatter plots of posterior samples (µ, tR) and (λ, tR) with the “true”
values indicated by cross-hairs. The points lie on hyperbola, reflecting the fact that points
in parameter space on the ray (µ/c, λ/c, ctY ), c > 0 are not well distinguished by the data.

No radiocarbon dates were provided for leaves one and fifteen of the synthetic true tree
in Figure 3. Marginal posterior distributions for the ages of the two undated sequences
are given in Figure 6. The reconstructed age distributions of Figure 6 have a width which
goes down as µ and the aligned sequence length L increase. In the present setting, the low
accuracy is driven by the relatively low mega-faunal mutation rate µ, and by uncertainty in
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Figure 3: (left) Synthetic data, the true genealogy. Leaf labels correspond to distinct fossil
sequences. (right) A genealogy sampled from the posterior distribution.
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MCMC updates

Figure 4: (top) MCMC output for the slowest mixing statistic, the root coalescent time
tR. The x-axis is MCMC updates (×2500). The autocorrelation time of this statistic
was about 13000 updates. The total time for the run shown was around 18 hours, in a
MatLab implementation, on a laptop purchased in 2001. (bottom) The serial autocorrelation
function of the trace above. Horizontal lines show asymptotic variance at ±2σ (Geyer 1992).
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Figure 5: Scatter plots of posterior samples of (µ, tR) (left) and (λ, tR) (right). Cross-hairs
indicate true parameter values. Note: λ = 1/(Neρ), see Section 3 for details.
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mtDNA sequences. (top) leaf 1 of Figure 3, (bottom) leaf 15. Synthetic true ages indicated
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the value of that rate. For species of particular archaeological interest (we have in mind the
polynesian rat) some of this uncertainty could be removed using independent measurements
of mutation rates.

The model we are fitting makes a number of assumptions which are unlikely to hold for this
population. The real population size is not constant. The animals are distributed in breeding
colonies which intermingle, but are not panmictic. The mutation process is correlated along
the sequence, and is subject to selection. Because we ignore these properties, immediate
chronometric conclusions cannot be drawn from an analysis of the kind presented above. The
aim here is illustrate sample-based genealogical inference in a simple setting. Nevertheless,
the model we are fitting is the natural null model for this kind of problem. Departures from
this model may be expected, and in future work evidence for such features will no doubt be
sought. However those future model comparison studies will be made relative to this model,
or something very similar, and will need to make a fit of the kind made in this section.
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Appendix A: Warning

In this appendix we show that the posterior density fX|D of Equation (4) is improper when
p(µ, λ) ∝ 1/(µλ). Let

P (A|BI) =
∫

A∩Ω

fX|D(x|BI)dx

Let ε > 0 and a compact subset A of Ω be given, satisfying P (A|BI) > 0 and, for each
(µ, λ, E, tY , BY ) ∈ A, µ > 0, and min(tY ) > max(tI) + ε. For each c > 1 let cA = {cx : x ∈
A}, and, for g = (E, tY , tI), cg = (E, ctY , tI). We now show that P (A|BI) = P (cA|BI).
First, Pr{BY , BI |g, µ} = Pr{BY , BI |cg, µ/c} from Equation (3). Next, consider fG(cg|λ/c)
in Equation (2). The number of lineages present at the time ti of coalescent node i depends
on the times of all other nodes in the tree, that is, ki = ki(tY , tI) in the rate ki(ki − 1)/2
for coalescence at time ti. However, A is defined so that, for x ∈ A, ki(tY , tI) = ki(ctY , tI)
for all i = 1, 2 . . . 2n − 1 and all c > 1, and consequently fG(cg|λ/c) = fG(g|λ)/cn−1.
The priors dµ/µ and dλ/λ are scale invariant, and volume element dtY contributes cn−1

so the change of variables x′ = cx in P (cA|BI) gives us back P (A|BI). Now, there exists
a sequence, 1 < c1 < c2 < c3 . . . with the property that A, c1A, c2A, c3A . . . are mutually
disjoint. Since P (A|BI) > 0, and P (cnA|BI) = P (A|BI) for each n = 1, 2, 3 . . ., it follows
that P is improper.

Appendix B: Encouragement

In this appendix we show that the conditions given in our encouragement in Section 4
determine a proper posterior. First we bound Pr{BY , BI |g, µ} away from one, for tR ≤ t∗R.
Since the BI are not identical, there is at least one mutation over g. The probability to get
the sequences BI and BY is less than the probability that there is at least one mutation
(since BI implies a mutation), which is one minus the probability for no mutations on g,

Pr{BY , BI |g, µ} ≤ 1−
∑

b∈C
πbe

µQb,b|g|

≤ 1−
∑

b∈C
πb min

b∈C
eµQb,b(2n−2)t∗R

where |g| =
∑
〈i,j〉∈E(g) |ti − tj | is the total edge length. Note that Qb,b is negative and

|g| ≤ (2n − 2)t∗R, as the greatest tree length is less than the number of edges times the
maximum edge length. Let Γ denote the set of all genealogies g allowed for leaf times tI and
given tR ≤ t∗R. Integration dg involves integration dn−1tY and summation over all distinct
tree topologies E. The normalizing constant Z =

∫
fX|Ddx is

Z =
∫ µ∗

0

∫

Γ

∫ λ∗

0

[ ∑

BY ∈B
Pr{BY , BI |g, µ}

]
fG(g|λ)p(λ, µ)dλdgdµ

≤ 4(n−1)L

∫ µ∗

0

1
µ

(
1−min

b∈C
eµQb,b(2n−2)t∗R

)
dµ

×
∫

Γ

∫ λ∗

0

λn−2 exp

(
−λ

2

2n−2∑

i=1

ki(ki − 1)(tv(i)+1 − tv(i))

)
dλdg

The integral over µ is finite. The integration dλdg is a sum, over tree topologies, which
are finite in number. Each term of that sum is given by the integral dλdtY of a bounded
function over a bounded domain. It follows that the posterior is proper.
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Appendix C: Markov chain Monte Carlo

In this Appendix we give an MCMC scheme for states with ancestral sequences. For our ex-
ample, we suppose p(λ, µ) = (λµ)−1. Let Ω denote the space of states x = (µ, λ,E, tY , BY ).
We specify a Markov chain Xn, n = 0, 1, 2 . . ., with states, Xn ∈ Ω, and equilibrium fX|D.
Metropolis et al. 1953 Hastings 1970 and Green 1995 define a class of Monte Carlo update
algorithms which determine a transition matrix stationary with respect to a given target
distribution.

Suppose Xn = x. A value for Xn+1 is computed using the Metropolis-Hastings algorithm.
First, a candidate state x′ is generated by randomly perturbing x in some way. An operation
of type m is chosen at random from a list m = 1, 2 . . .M of operation types. The state x′

is generated. This is implemented by drawing uniform random variates u = (u(1), u(2) . . .)
according to according to a density qm(u), and computing some function x′ = xm(x, u).
For example, to do a random walk update to µ with constant window size z > 0, draw
u ∼ U(0, 1) and set µ′ = µ + z(2u − 1). Consider now the reverse operation. Suppose the
draw u′ ∼ qm maps x′ back to x, so that x = xm(x′, u′). In the random walk example,
u′ = 1− u. Secondly, we accept the candidate, and set Xn+1 = x′ with probability

αm(x′|x) = 1 ∧ fX|D(x′|BI , tI)qm(u′)
fX|D(x|BI , tI)qm(u)

∣∣∣∣∣
∂(x′, u′)
∂(x, u)

∣∣∣∣∣ ,

(where a ∧ b equals a if a < b and otherwise b) for update type m. If the candidate is not
accepted, we set Xn+1 = x, so the state of the chain is unchanged.

We may choose the proposal scheme qm, xm, m = 1, 2 . . . M as we please, subject to con-
ditions outlined, for example, in Tierney 1994. The role of the Jacobean factor is clarified
in Green 1995 in a general setting. As an example, in the random walk update above,

the relevant block of the Jacobian matrix is
[

1 2
0 −1

]
so the absolute value of the de-

terminant is equal one and the acceptance probability for the random walk update to µ is
1 ∧ fX|D(x′|BI , tI)/fX|D(x|BI , tI). In our MCMC we need to use an update in which this
Jacobian factor is not equal one. We saw, in Section 4, that the posterior density can be ex-
pected to posses a ridge, which we may move along using the operator x′ = cx. The update
then is as follows. Suppose Xn = x. Choose c ∼ U(1/2, 2). Set x′ = (µ/c, λ/c,E, ctY , BY ).
This may result in x′ 6∈ Ω (for example scaled ancestral node ages ctY may violate of
the parent-child age order relation for edges in E). If this is the case x′ will be rejected
at the next step. If x′ ∈ Ω, the candidate is admissible, and the acceptance probability
is 1 ∧ cn−5fX|D(x′|BI , tI)/fX|D(x|BI , tI). Let us see how the factor cn−5 arises. Since
t′Y = ctY , µ′ = µ/c, λ′ = λ/c and c′ = 1/c (so that x = c′x′), ∂(x′, c′)/∂(x, c) has diagonal
(c, . . . [n− 1 repeats] . . . c, c−1, c−1,−c−2). The off-diagonal elements are zero, except the
last column which contains non-zero elements. The determinant of this matrix is −cn−5.

Some of the parameters of the problem may feasibly be Gibbs-sampled (Suomela 1976). For
parameter p ∈ x, let x−p = x \ {p} denote x with p omitted. The conditional density of
λ|x−λ, D in fX|D is

λ|x−λ, D ∼ λn−2e−βλIλ≤λ∗

where

β =
1
2

2n−2∑

i=1

ki(ki − 1)(tv(i)+1 − tv(i)).

Here v(i) is a mapping from the unordered node labels of Section 4 back to the age-ordered
node labels of Section 3. This is just a Gamma(n− 1, β) density on λ ≤ λ∗.
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As discussed above, we have the option to sum out the ancestral sequences BY from the
posterior distribution, using the pruning algorithm. If that is done, BY does not arise in x,
the Monte-Carlo state. If we choose not to prune, so BY is part of x, then we need some
MCMC update for the conditional distribution of BY |BI , g, µ determined by fX|D. This
conditional distribution is in fact a Markov Random Field (MRF), in which each of the
n− 1, L-component variables Bi ∈ CL, i ∈ Y is conditionally independent of the rest, given
the sequences at its neighbors i1, i2 and i3 on the tree. The neighbors of vertex i in tree g
are those vertices to which it is connected by an edge in E(g). In the update below, i2 and
i3 are i’s child vertices. The root vertex of g is the child of a vertex of infinite age. The
MRF may be simulated by the following Gibbs update. Select i ∈ Y uniformly at random.
For each s = 1, 2 . . . L and b ∈ C, calculate the 4-components

Bb =
[
eQµ(ti1−ti)

]
Bi1,s,b

[
eQµ(ti−ti2 )

]
b,Bi2,s

[
eQµ(ti−ti3 )

]
b,Bi3,s

of the vector B(B−i,s, g, µ) = (BA,BC ,BG,BT ). Draw Bi,s = b with probability Bb/ZB
where ZB(B−i,s, g, µ) =

∑

a∈C
Ba. The acceptance probability is equal one.

It is necessary to have some topology changing update, so that tree-space is explored. We
make some small random modification of the tree topology, so that the new state x′ is
equal x up to E → E′. For example, we can choose two edges 〈i, i′〉 and 〈j, j′〉 in E
and reconnect them as 〈i, j′〉 and 〈j, i′〉. If the resulting tree is not admissible the can-
didate state will be rejected. The probability to generate E′ from E in this way is just
the probability to chose the two edges by which they differ, so the acceptance probability
is 1 ∧ fX|D(x′|BI , tI)/fX|D(x|BI , tI). Where simulation is made with ancestral sequences
an explicit part of the Monte Carlo state, we improve the candidate’s chances if we draw
new sequences at vertices i and j, using the above Gibbs proposal in the new tree. This
is not exactly a Gibbs update, since the conditional distributions Pr{Bi|B−i, g

′, µ} and
Pr{Bi|B−i, g, µ} involved in the forward and reverse proposals are normalized on different
trees. The acceptance probability 1 ∧ ∏

k=i,j

∏L
s=1 ZB(B−k,s, g

′, µ)/ZB(B−k,s, g, µ) does
not quite collapse down to one.

When we account for the uncertainty in the ages of the sequence data, as in Sections 6
and 8, we need an update varying leaf times tI , which are otherwise fixed. We use a suite
of updates, suggested by our experience in Nicholls and Jones 2001 with MCMC for the
posterior distribution of radiocarbon calibration. We omit the Hastings ratios from this
paper as they are simply the constant prior density Hastings ratios of Nicholls and Jones
2001 weighted by the likelihood ratio

Pr{BI , BY |g, t′I , µ} fG(g|t′I , λ)
Pr{BI , BY |g, tI , µ} fG(g|tI , λ)

.

We include a number of other move types, including other topology-changing tree operations.
We have a random walk move for node age, acting on a single randomly chosen ancestral
node. This move generates its candidate by selecting a new time for the node at random
between the time of its parent, and oldest child. We have experimented with a wide range
of other moves. However, whilst it is easy to think up computationally demanding updates
which improve the convergence and mixing rates per Markov-chain update, it is harder to
find updates that improve the convergence and mixing rates per CPU second. Certain move
types which may be of value have not been considered. In particular, updates of the kind
described in Mau et al. 1999 which are natural in the cophentic matrix tree representation,
were not considered, though they seem promising.
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