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ABSTRACT

The processes of mutation and nucleotide substitution contribute to the
observed variability in virulence, transmission and persistence of viral
pathogens. Since most viruses evolve many times faster than their human
hosts, we are in the unusual position of being able to measure these
processes directly by comparing viral genes that have been isolated and
sequenced at different points in time. The analysis of such data requires
the use of specific statistical methods that take into account the shared
ancestry of the sequences and the randomness inherent in the process of
nucleotide substitution. In this paper we describe the various statistical
methods for estimating evolutionary rates, which can be classified into
three general approaches: linear regression, maximum likelihood, and
Bayesian inference. We discuss the advantages and shortcomings of
each approach and illustrate their use through the analysis of two
example viruses; human immunodeficiency virus type 1 and dengue virus
serotype 4. Reliable estimates of viral substitution rates have many
important applications in population genetics and phylogenetics,
including dating evolutionary events and divergence times, estimating
demographic parameters such as population size and generation
time, and investigating the effect of natural selection on molecular
evolution.

1. INTRODUCTION

As a general rule, parasites have faster rates of mutation than their hosts.
Parasites tend to be smaller in size, with shorter generation times, and
therefore undergo more rounds of reproduction per unit time. This
difference in mutation rates is particularly clear for viruses and their
human hosts, not only because viral generation times are often very short,
but also because replication of their genetic material is commonly many
times more error-prone than in humans. That said, viruses do vary widely
in mutation rate as a result of differences in their life cycles and mode of
replication (e.g., Holland et al., 1982; Smith and Inglis, 1987; Jenkins et al.,
2002).

The most significant consequence of the high mutation rate of viruses is
their ability to quickly adapt to their environment, as illustrated by the
rapid evolution of human immunodeficiency virus (HIV) strains that are
resistant to anti-viral drugs or are capable of evading the hosts’ immune
response (e.g., Nijhuis et al., 1997; Goulder et al., 2001). In other
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circumstances, mutation may allow a virus to productively infect new cell
types or new host species. As the rate of mutation contributes to the
adaptive potential of a virus it is obviously important to accurately
measure this value. In addition, the mutation rate is a key parameter in
population genetic and phylogenetic analyses of viral populations and is
therefore necessary to understand both the pattern of viral genetic
diversity observed today and the timescale of past evolutionary and
epidemiological events.

In this article we describe the various methods by which mutation rates
can be estimated from molecular sequence data, and discuss the
advantages and disadvantages of each. We illustrate these methods by
applying them to two human viruses that cause worldwide morbidity and
mortality; human immunodeficiency virus type 1 (HIV-1) and dengue virus
serotype 4 (DEN-4). Both are RNA viruses whose large genetic diversity
and high mutation rates directly contribute to their virulence and
pathogenicity. Our choice of data sets also illustrates the range of
evolutionary timescales across which the methods we describe can be
applied, as the HIV-1 data are taken from a study of viral evolution within
an individual infected patient (Shankarappa et al., 1999), whereas the
DEN-4 data have been sampled from infected individuals across several
decades in many different countries (Lanciotti et al., 1997). Both these
data sets are characterized by the fact that the sequences were sampled at
different points in time (commonly referred to as temporally spaced, or
serially sampled sequences).

Although we only consider viruses here, the methods described are
equally applicable to any population from which gene sequences sampled
at different points in time show a statistically significant number of genetic
differences. Populations from which estimates of mutation rates can be
readily obtained are characterised by some combination of the following
properties: (i) a high mutation rate, (ii) long periods of time between
samples, as is the case for ‘‘ancient DNA’’, and (iii) long stretches of
sampled sequence data.

At this point we must introduce the distinction between mutation rates
and substitution rates, although the two terms are sometimes confused in
the literature. The former is the rate at which mutational errors are
incorporated into a genome during replication, and can be expressed as the
number of mutations per nucleotide site per replication event. This rate is
largely determined by the particular viral or host polymerase used and the
presence or absence of post-replicative repair systems. RNA viruses and
small DNA viruses tend to lack such repair systems and thus have higher
mutation rates. Molecular biology techniques can be used to estimate the
mutation rate of viruses in vitro and in vivo (e.g., Mansky and Temin, 1995).
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In contrast, the substitution rate of a virus depends on many factors and is
a property of the viral population as a whole. It is the rate at which new
mutations spread and become fixed in the population as a result of natural
selection or random genetic drift, and is expressed as the number of
substitutions per nucleotide site per unit time (days, years or generations).
The substitution rate depends on the complex interaction between the
effective size of the population and the distribution of mutational selection
coefficients, that is, the relative proportion of mutations that are
advantageous, neutral or disadvantageous. Some of these interactions can
be unravelled by comparing the substitution rates separately at synonymous
and non-synonymous nucleotide sites – mutations at synonymous sites do
not change the encoded amino acid and can therefore be considered as
having little or no selective effect (for example, Kimura, 1977). One of the
most important theoretical results in molecular evolution is that if all
mutations are selectively neutral then the substitution rate is equal to the
mutation rate (Kimura and Ohta, 1971; Kimura, 1987). Although useful,
the argument that synonymous sites are neutral should be applied carefully
as it assumes the absence of several factors, some of which are common in
viruses, namely (i) fitness differences arising from the use of alternative
codons, (ii) secondary RNA or DNA structure in coding and non-coding
regions, and (iii) overlapping reading frames. In general, if selection is acting
at the nucleotide level as well as the encoded protein absolute statements
about selection at the protein level can be difficult, although relative
statements can often still be made.

All the procedures outlined below estimate the substitution rate, not the
mutation rate. Although the substitution rate depends on several
parameters and may sometimes be difficult to interpret, it is important
precisely because it does contain information about many fundamental
evolutionary processes. For example, if two genes in the same viral
genome have unequal substitution rates then we might conclude that
different selection pressures have been acting on them, since the underlying
mutation rate is unlikely to differ. Furthermore, comparison of substitu-
tion rates among different virus species and strains may shed light on the
varied roles that mutation and genetic diversity play in maintenance of
viral infection and transmission.

1.1. Ancestral Diversity and Evolutionary
Non-independence

Intuitively, one might expect to be able to estimate substitution rates using
a simple argument along the lines of ‘‘distance equals rate multiplied by
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time’’. If two gene sequences differ at d nucleotide sites and were sampled at
different points in time, t1 and t2, then this rationale suggests that the
substitution rate � equals d/(t2�t1) (Figure 1a). However, this will only be
true if one sequence is a direct ancestor of the other. In practice, as
illustrated in Figure 1b, this method will overestimate � when the time of
most recent common ancestor (troot) of the two sequences exists prior to t1.
This is known as the problem of ‘‘ancestral diversity’’ and occurs because
the population at time t1 contains some genetic variation. In most cases troot
will be unknown so the time over which genetic distance d has accumulated
will also be unknown. Ancestral diversity can be taken into account by
adding a third outgroup sequence. The difference between the genetic
distances (d1 and d2) of the two sampled sequences to this outgroup thus
reflects the difference between their sampling times (Figure 1c; Li et al.,
1988). This argument holds even if individual nucleotide sites have
undergone multiple substitutions, provided that an accurate probabilistic
model of nucleotide substitution is used to estimate d (see Swofford et al.,
1996). In common with many other methods this approach assumes that the
substitution rate remains constant through time, an assumption known as
the molecular clock.

Extending this methodology to multiple sequences appears straight-
forward; for example, if yi is the genetic distance from sequence i to the
most recent common ancestor of the sampled sequences (measured off
a phylogenetic tree) and ti is the sampling time of sequence i, then the

Figure 1 The problem of ancestral diversity. Gene sequences (open circles) have
been sampled at two time points, t1 (earlier) and t2 (later). The vertical dimension
represents genetic distance. (a) There is zero genetic diversity at the earlier time point
(t1) so the genetic distance d between the sequences reflects the difference in sampling
times. (b) Due to genetic diversity at the earlier time point, the common ancestor of
the sampled sequences (troot) exists prior to t1. Hence the genetic distance d is
erroneously large. (c) The problem of ancestral diversity can be avoided by using an
outgroup. The difference between the distances d1 and d2 correctly reflects the
difference in sampling times.
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gradient of a linear regression of yi against ti should provide an estimate of
the substitution rate � (Figure 2). We call this method the root-to-tip linear
regression method and it has often been used to estimate substitution rate,
but unfortunately it has serious shortcomings. It assumes that each yi is
statistically independent, whereas the sampled sequences are linked by a
common evolutionary history and are thus not independent. The non-
independence arises from the internal branches of the phylogeny that
describes this shared history, as these branches contribute to multiple pairs
of yi and ti values. This problem of non-independence arises in many other
evolutionary problems (e.g., Harvey and Pagel, 1991) and can be solved by
developing methods that explicitly incorporate the phylogenetic structure
implicit in sampled sequence data. The use of models that do not
incorporate this information will produce unpredictable biases in inference
and hypothesis-testing procedures.

While many computational methods have been developed to estimate
the phylogenetic structure of sequence data under the assumption of a
molecular clock, few allow for temporally spaced sequences. Methods such
as UPGMA (Sokal and Michener, 1958), likelihood ratio tests of the
molecular clock (Felsenstein, 1981) and coalescent methods in population
genetics (Kingman, 1982; Hudson, 1990; Kuhner et al., 1995) all assume
that there are no significant differences between the sampling times of the
individual sequences. Rather than being a potential problem, we show here
that the unique structure of temporally spaced sequence data is an asset that
can be exploited to a number of novel ends, including the accurate
estimation of substitution rates.

Figure 2 Root to tip distances measured on a phylogeny. Four gene sequences
(open circles) have been sampled at three different time points (t1, t2, t3). The y values
represent the genetic distances from each sequence to the root (filled circle). Many of
the y values are non independent because of shared ancestry of the sequences. For
example, the dark arrow denotes the shared part of distances y1 and y2.
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The remainder of this article is organised with each section focusing on
a different approach for estimating molecular evolutionary rates. We start
with the simplest methods and progress to the more sophisticated. In each
section we demonstrate the relevant methods on HIV-1 and DEN-4 data
sets, discussing the advantages and shortcomings of each.

2. GENERAL LINEAR REGRESSION AND
OTHER DISTANCE-BASED METHODS

Some of the first estimates of substitution rates using temporally spaced
sequences were obtained by comparing sequences of human influenza A
strains (Krystal et al., 1983; Martinez et al., 1983; Hayashida et al.,
1985). All of this early work involved direct comparison of the genetic
distance between two sequences with the interval separating their
isolation times (Figure 1a). As explained in the previous section, this
method is only accurate if the genetic diversity of the population at the
time of sampling is negligible, such that sequences isolated at different
times differ only by substitutions accumulated during the time interval.
If this condition is not met then this method has an upward bias
and can provide an upper limit for the estimate of substitution rate.
Consequently, the outgroup method described in Figure 1c was intro-
duced in the context of estimating the rate of evolution of HIV-1 (Li
et al., 1988).

From the mid 1980s to the present, a series of distance-based regression
methods were employed by various researchers to remove the ‘‘ancestral
diversity’’ bias generated by the substantial population polymorphism that
exists in most viral populations (for example, Buonagurio et al., 1986;
Saitou and Nei, 1986; Gojobori et al., 1990; Fitch et al., 1991; Leitner and
Albert, 1999; Pagel, 1999; Shankarappa et al., 1999; Drummond and
Rodrigo, 2000; Korber et al., 2000). With some exceptions, these methods
were largely introduced in an informal manner, and often not linked to past
research. In the next sections we will describe the three major classes of
regression methods that this body of research fall into.

2.1. Root-to-tip Linear Regression

The ‘‘root-to-tip’’ linear regression method, described briefly above, has
been a common choice for the estimation of substitution rate. This method
proceeds by first estimating a rooted phylogeny of the sequences under
analysis and then performing a linear regression between the time of
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sampling of each tip and the genetic distance (sum of reconstructed branch
lengths) from the root to each tip. The linear model is thus:

E½droot, i� ¼ �ðti � trootÞ ¼ �ti � �troot

where ti is the time of tip i, � is the unknown substitution rate and troot is the
unknown time of the root (in population genealogies this is equal to the time
of the most recent ancestor). Under this model, the gradient of a linear
regression of droot,i against ti provides an estimate of the substitution rate
and the y-intercept is equal to ��troot. By definition, the x-intercept is equal
to troot. Shankarappa et al. (1999) used this linear regression technique
to study the long-term intra-host rate of HIV-1 evolution in nine
infected patients, and Korber et al. (2000) used it to date the origin of
HIV-1 group M.

2.2. Pairwise Distance Linear Regression

The second regression method was introduced by Leitner and Albert (1999)
and formally described and extended upon in Drummond and Rodrigo
(2000). This method relies on a result from the population genetics
literature; that the expected distance between two random sequences
sampled at the same time in a haploid population is equal to �¼ 2Ne�g,
where Ne is the effective population size and �g is the mutation rate per site
per generation. Extending this model to pairs of sequences i and j with times
ti and tj, results in the following linear model:

E½di,j � ¼ �jti � tjj þ�

Following this model, the gradient of a linear regression of di, j against
itij¼ |ti� tj| is an estimate of the substitution rate and the y-intercept is
an estimate of the population genetic parameter �. Because �g is
measured in mutations per generation, while the slope of the regression is
typically in units of substitutions per year or per day, it is only possible
to interpret the x-intercept of this regression as the product of 2Ne and
generation length in the time units used. Unlike the root-to-tip method,
this method does not require an estimate of the tree, and has been shown
to be an unbiased estimator (Drummond and Rodrigo, 2000). However,
because it does not use information about the correlation of the
sequences due to shared ancestry the power of this method is significantly
reduced, typically leading to very large confidence intervals. Leitner and
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Albert (1999) used a parametric bootstrapping technique to demonstrate
that the distribution of pairwise distances in the HIV-1 transmission
history they analysed was not over-dispersed. This suggests that a
simple Poisson process could not be rejected as an adequate description
of molecular evolution of HIV-1 in the transmission history they
studied. However, this result could also be due to the low power of
this method.

2.3. Generalised Least-squares on a Tree

An interesting approach to substitution rate estimation arises from
literature concerning the use of the comparative method in evolutionary
biology (Harvey and Pagel, 1991; Pagel, 1999). The comparative method is a
general framework for estimating the covariance of phenotypic traits among
species, which correctly accounts for the non-independence arising from
shared ancestry. These methods can be regarded as a class of generalised
least squares (GLS) approaches. Within this framework the correlation
between a continuous trait and the branch lengths of the tree itself can also
be examined. If we regard time itself as a continuous trait, then we can
consider the correlation of time with the branch lengths of the tree. If the
branch lengths of the tree are in units of substitutions per site then we can
obtain an estimate of the rate of substitution per site per unit time (see
Pagel, 1999). Because this method explicitly considers the correlation
structure of the tree, the non-independence of observed sequences is correctly
accounted for. However, the interpretation of this method is difficult, as it
assumes that time is a random variable, when clearly the substitutions
themselves are the source of stochasticity, not time. Nevertheless, this
method represents an interesting intermediate between the distance methods
outlined above and the fully probabilistic methodologies outlined in later
sections.

2.4. Hypothesis Testing and Estimation of Errors

Point estimates are meaningless without a measure of the error associated
with the estimate. This is particularly important when the aim of estimation
is hypothesis testing. Unfortunately we cannot make use of standard linear
regression tests and statistics because these assume that the data are
independent, whereas the sequences are not independent because they share
evolutionary history. For example, the use of confidence intervals about a
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regression line (e.g., Tanaka et al., 2002) can produce an underestimate of
the true error about substitution rate.

However, the linear regression procedures are amenable to general
statistical techniques for error estimation such as bootstrapping (para-
metric and non-parametric; Efron and Tibshirani, 1993) and jackknifing
(Wu, 1986). These methods involve the construction of pseudo-replicate
data sets to estimate the stochastic error in the original data. In the case of
bootstrapping, this can be done by randomly sampling the original data
with replacement (non-parametric bootstrapping), or by simulating data
using an assumed or inferred model of evolution (parametric boot-
strapping). However, care must be taken because of the non-independence
of the genetic distance data used. For example, Korber et al. (2000) used
the root-to-tip regression method to estimate the evolutionary rate and age
of the root (troot) of HIV-1 (group M) viruses. Korber et al. attempted
to estimate confidence intervals around their point estimate of troot by
re-sampling with replacement (non-parametric bootstrapping) the linear
regression data points. Their analysis gave a tight confidence interval
around their estimate of troot and thus enabled them to reject a recent
hypothesis for the origin of HIV-1. However, in this setting the bootstrap
procedure they used will underestimate the true confidence intervals as it
does not take into account the correlation of bootstrap replicates due to
shared ancestry (i.e., it treats each root-to-tip distance as an independent
piece of information about substitution rate). A statistically rigorous
approach would have been to bootstrap the nucleotide sites in the
sequence alignment, rather than the root-to-tip distances, as each site in
an alignment represents an independent realization of the substitution
process. In the next section we verify this theoretical result and show that
bootstrapping the nucleotide sites rather than the regression points
produces significantly larger and more realistic confidence intervals for a
set of DEN-4 virus sequences.

Non-parametric bootstrapping of sequence data could also be used to
estimate the confidence intervals of the GLS method. However, non-
parametric bootstrapping of sequences is not sufficient for error estimation
in the pairwise distance regression. The pairwise distance regression has
two sources of statistical error: (i) error due to the substitution process, and
(ii) error due to the coalescent process. Thus, a full parametric bootstrap
must be employed to correctly assess the error associated with the pairwise
distance method (Drummond and Rodrigo, 2000).

In all three cases the statistical error due to phylogenetic reconstruction is
difficult to accommodate. However, these problems can be circumvented by
the use of full likelihood or Bayesian methods, which we describe in Sections
3 and 4, below.

340 A. DRUMMOND, O.G. PYBUS AND A. RAMBAUT



2.5. Examples of Linear Regression Methods

In this section we compare the root-to-tip and pairwise distance linear
regression methods on two example datasets (DEN-4 and HIV-1) in order
to illustrate their relative performance. For both methods, a matrix of
pairwise genetic distances was calculated using an empirically derived F84
model of substitution (described in Swofford et al., 1996). For the root-to-
tip regression method, this matrix was used to estimate a neighbour-joining
tree (Saitou and Nei, 1987), and the root of the tree was picked so as to
maximise the R2 value of the regression. In a real-life application, some form
of model selection process should be used to choose the substitution model
that best describes the data.

Figures 3 and 4 display the results of both root-to-tip and pairwise
distance regression analyses on the DEN-4 and HIV-1 datasets, respectively.
The root-to-tip estimate of substitution rate for the DEN-4 dataset was
8.14� 10�4 substitutions per site per year with a confidence interval of
[4.69� 10�4, 14.1� 10�4] estimated from 5000 bootstrap replicates of the
sequence data. The corresponding estimate of the date of the root is 1928
with a confidence interval of [1901, 1946]. The estimated rate compares with
9.10� 10�4 [0, 33.7� 10�4] for the pairwise distance method. These
confidence intervals are very large and include a rate of zero. The two

Figure 3 Application of the linear regression methods to 17 Dengue virus
serotype 4 (DEN 4) sequences, isolated from different patients across five decades.
(a) Root to tip linear regression. The gradient of the regression (bold line) is an
estimate of the substitution rate (�) and the x axis intercept is an estimate of the time
of the most recent common ancestor (troot). The pale lines represent 500 bootstrap
replicates of the original sequence alignment and provide an estimate of the
statistical error in these estimates. (b) Pairwise distance linear regression.
The gradient of the regression (bold line) is an estimate of the substitution rate (�)
and the y axis intercept is an estimate of � (see text for details).
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methods are congruent, and as we will see in later sections they agree well
with the results of more sophisticated methods, but suffer from a lack of
power, and less flexibility in model specification.

Note that if we had followed Korber et al. (2000) and bootstrapped the
root-to-tip distances instead of the sequence data we would have calculated
a confidence interval for substitution rate of only [5.83� 10�4, 11.1� 10�4],
and a confidence interval for troot of [1912, 1942]. These intervals are 56%
and 67% of the intervals produced by the correct bootstrapping method.
Discrepancies of this magnitude can easily result in incorrect conclusions
when testing specific hypotheses.

Figure 4 shows the results of the distance-based analyses of the HIV-1
dataset. The pairwise regression method gave an estimate rate of 3.17� 10�3

[0.26� 10�3, 8.61� 10�3] substitutions per site per year, whereas the root-
to-tip regression method gave an estimate of 6.24� 10�3 [4.64� 10�3,
7.89� 10�3], with confidence intervals that exclude the pairwise estimate.
A possible reason for this discrepancy is model misspecification in one or
both of the methods. However because of the very wide confidence intervals
on the pairwise method, the discrepancy between these results may not be
very important.

In general, linear regression procedures are fast and useful for visualising
new data sets. They can assist in model selection, by suggesting whether a
uniform or variable model of substitution rate through time is necessary
to explain the temporal structure in a given data set (for example,
Shankarappa et al., 1999). However, they make several limiting assumptions
and we do not recommend that they provide the final result of an analysis of

Figure 4 Application of the linear regression methods to 117 HIV 1 sequences,
isolated over 134 months from a single infected patient. (a) Root to tip linear
regression. (b) Pairwise distance linear regression. See Figure 3 legend for more
details.
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temporally spaced viral data. Newer methods, such as maximum likelihood
and Bayesian statistical inference, can utilise more information from the
sequences and can potentially allow much more complex models of
molecular evolution and demography to be investigated. We will describe
these methods in the next two sections.

3. MAXIMUM LIKELIHOOD ESTIMATION

Since the initial attempts to estimate rates using distance-based methods, a
number of researchers have developed and tested ML methods that accom-
modate the time structure of temporally spaced sequences (Rambaut, 2000;
Drummond et al., 2001; Seo et al., 2002b). Each tip of the tree has a known
time (the isolation date of the sequence). The times of the internal nodes
of the tree are initially unknown and are given arbitrary starting times
consistent with their order in the tree. An additional parameter, the
substitution rate, is then used to scale these times into units of expected
number of substitutions per site. Given the tree and the expected number
of substitutions per site for each branch of that tree, the likelihood of the
model can be calculated (Felsenstein, 1981). The vector of internal node
times, (t0, t1, . . . ,tn) along with the substitution rate (�) and any parameters
of the substitution model (such as the transition–transversion ratio) are then
put into a standard multi-dimensional optimisation procedure to find the
values that provide the maximum likelihood. This model has been labelled
as the ‘single rate dated tips’ (SRDT) model (Figure 5; Rambaut, 2000).

Figure 5 Maximum likelihood estimation of substitution rate using the single rate
dated tips (SRDT) model. Ancestral divergence times (filled circles) are unknown
and free to vary. The isolation times of the sampled sequences (open circles) are
known and fixed. The substitution rate (�) is used to convert the isolation times into
genetic distances (measured in units of substitutions per site). The ancestral
divergence times and � are then found by maximum likelihood.
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These methods are more sensitive and accurate than distance-based
methods, as can be seen by the reduced confidence intervals reported in
Section 3.3.

3.1. Hypothesis Testing and the Likelihood Ratio Test

One of the strengths of the ML inference framework is that it provides
powerful tools for hypothesis testing and model comparison through tests
such as the likelihood ratio test (LRT). This test uses the difference in log
likelihood between two hypotheses to assess whether one provides a
significantly better fit to the data than the other. The LRT requires that the
hypotheses are nested, that is, one or more parameters of the more general
hypothesis are constrained to particular values in order to obtain the more
specific hypothesis. For example, the substitution rate parameter could be
constrained to a particular a priori value (perhaps a previously inferred
value estimated from different data). The likelihood ratio would then be
used to test whether this substitution rate was a significantly worse fit to
the data than the maximum likelihood estimate of rate (the more general
hypothesis). For such cases, an approximate null distribution of the
likelihood ratio statistic has been described (Wilks, 1938) or it can be
generated using simulation (e.g., Huelsenbeck and Rannala, 1997). One of
the first descriptions of such a test in phylogenetics was the test of the
molecular clock by Felsenstein (1981) but this test assumes that all
sequences were sampled contemporaneously. The application of the
likelihood ratio test to temporally sampled data is described in more
detail by Rambaut (2000) and Drummond et al. (2001).

3.2. Rate Variation Through Time

There are a number of reasons why evolutionary rates may vary through
time across an entire viral population. For example it has been suggested
that HIV-1 viruses in a host exhibit a slowdown in substitution rate at the
end of the asymptomatic period (Shankarappa et al., 1999). These patterns
of concerted population-wide changes in rate through time have also been
observed due to external changes in environment such as application of
anti-retroviral drugs (Drummond et al., 2001). It is relatively straight-
forward to design an LRT that will test the hypothesis of concerted rate
variation through time, and this has already been described for the case of
stepwise changes in substitution rate (Drummond et al., 2001). Models of
this variety may be described as multiple rates dated tips (MRDT) models.
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Further advances in this direction will assist in the rigorous and detailed
dissection of the molecular evolutionary process and its variation through
time.

3.3. Examples of Maximum Likelihood Methods

Under a maximum likelihood framework we have greater flexibility in
model selection. Using the program TipDate (Rambaut, 2000) we estimated
the substitution rate of the DEN-4 dataset using the HKY model of
substitution with a different rate at each codon position. The input tree
topology was estimated under the different rates (DR) model and the same
substitution model in PAUP* (Swofford, 1998). The maximum likelihood
estimate of the mean substitution rate was 7.91� 10�4 [6.07� 10�4,
9.86� 10�4] substitutions per site per year and the estimated age of the
root is 1922 [1900, 1936]. Figure 6 shows the maximum likelihood trees for
DEN-4 under the SRDT model of evolution.

Using the program PAML (Yang, 1997), which also allows estimation of
rate under the SRDT model but is better able to handle large data sets, we

Figure 6 Application of the maximum likelihood approach to the DEN 4 data
set. The phylogeny shown was estimated under the SRDT model, so that each
sequence is positioned correctly with respect to its sampling date. The tips are
labelled with the year of sampling and the top scale gives the genetic distance from
the root. At the bottom is the timescale in years estimated using maximum
likelihood.
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estimated the rate of evolution of the HIV-1 sequences. Again, the input tree
topology was estimated under the different rates (DR) model and under
the HKY model of substitution in the program PAUP*. The maximum
likelihood estimate of the mean substitution rate was 4.24� 10�3

[3.26� 10�3, 5.36� 10�3] substitutions per site per year. The associated
confidence intervals do not contain either the pairwise or the root-to-tip
regression point estimates. This inconsistency in error estimates between
different methods arises from the implicit assumptions of each method,
such as the assumption of perfect knowledge of the tree topology, which
we discuss in the next section.

3.4. Shortcomings of Current Maximum
Likelihood Implementations

One limitation of current ML implementations, such as PAML and
TipDate, is that only a single tree is considered. This can be a problem for
two reasons: Firstly, there is usually considerable uncertainty in our
estimation of the true tree, so that it becomes important to reflect this
uncertainty in the confidence interval associated with the estimated
evolutionary rate. Secondly, the maximum likelihood tree topology under
the single rate dated tips (SRDT) model can be different from the maximum
likelihood tree topology under the DR model (Drummond et al., 2001), so
using an ML topology from PAUP* can bias substitution rate estimation
using TipDate. As with the root-to-tip regression analysis, the use of a single
tree introduces the potential for bias.

One could attempt to simultaneously find the maximum likelihood tree
and the evolutionary rate using heuristic optimisation. This would involve
progressively making changes to the tree accepting those that improve the
likelihood (the hill-climbing approach). Such techniques are used to estimate
the maximum likelihood tree in phylogenetics packages such as PAUP* and
PHYLIP, although not for the case of temporally sampled sequences.
Whilst such methods are feasible for small numbers of sequences, the
number of possible trees increases explosively as the number of sequences
increases (Schröder, 1870). This, in addition to the complex nature of the
constraints of the SRDT model, would make hill-climbing extremely
susceptible to producing sub-optimal solutions. On the other hand, if we
were not directly interested in the ancestral tree itself, it would be preferable
to have a method that took into account the shared ancestry of the data
without basing inference on a single estimation of ancestral genealogy.
Markov chain Monte Carlo (MCMC) methods provide exactly this
opportunity.
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4. BAYESIAN INFERENCE OF EVOLUTIONARY RATES

Markov chain Monte Carlo (MCMC) integration is often used in statistical
inference to summarise high-dimensional probability densities where
analytical solutions are difficult or impossible to calculate. MCMC works
by sampling the probability density function of interest, so as to provide a
representative sample of parameter values of the chosen model, given the
data. To estimate substitution rates, the chosen model generally includes the
tree topology, the times of ancestral nodes in the tree, the substitution rate,
and substitution parameters such as the transition/transversion ratio
(Drummond et al., 2002).

In phylogenetics and population genetics we often want to estimate
parameters, such as substitution rate, despite not knowing the true ancestral
history of the sequences. A good solution to this problem would be to
estimate the substitution rate from each of a large set of different ancestral
histories and then combine these individual estimates such that each rate is
weighted proportional to the likelihood of the corresponding tree. Trees that
make the data highly probable contribute most to the overall estimate. By
making the tree a nuisance parameter of the model, it becomes possible to
sample all plausible trees in an MCMC analysis in order to find the range of
plausible substitution rates. Unlike ML, which typically employs some kind
of hill-climbing procedure, MCMC is a stochastic algorithm and is thus able
to avoid getting stuck in local sub-optimal solutions because it samples the
whole distribution of interest. At each step in the algorithm, MCMC
proceeds by proposing a new set of parameter values (of which the tree
topology is one) and then either accepting or rejecting the newly proposed
state based on the Metropolitan-Hastings criterion (Metropolis et al., 1953;
Hastings, 1970). In essence, if the proposed state is better than the previous
state, it is accepted. However, if the proposed state is, say, 10 times worse
than the current state, it is accepted with a probability of p¼ 1/10¼ 0.1. If
the proposed state is rejected then the MCMC retains the current state and
the process is repeated. Using this acceptance criterion, the proportion of
times the MCMC algorithm visits a particular tree is an estimate of its
relative probability given the data.

Sample-based inference using MCMC readily lends itself to Bayesian
inference, in which prior information can be incorporated into the analysis.
Probability theory tells us that Posterior Probability / Likelihood � Prior
Probability. One natural approach to assigning prior probabilities to
genealogies that represent large populations is the coalescent process
(Kingman, 1982). In addition, parameters such as troot and effective
population size (Ne) can be given prior distributions that reflect information
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from independent sources, or are simply used in an exploratory manner to
investigate different a priori assumptions and hypotheses. For example, in
the case of a set of viruses sampled from a single infected host, a potential
prior distribution on troot is the age of the host. This prior represents the
assumption that the initial infection was from a single viral particle or a
small homogeneous population with no double-infection.

The historical population processes that shape the genetic diversity of a
population can be illuminated by genealogical methods such as the coalescent
(Kingman, 1982). The coalescent is the most appropriate framework for
studying the evolutionary genetics of a large population from which a sample
of sequences is drawn, and provides a number of opportunities for inference
in viral populations (e.g., Pybus et al., 2000, 2001). A description of the
coalescent for serially sampled sequences has recently been given (Rodrigo
and Felsenstein, 1999). This formulation of the coalescent has been used to
develop methods that estimate population sizes and substitution rates from
serially sampled sequences whilst taking into account the uncertainty of the
tree topology using MCMC (Drummond et al., 2002). Others have used the
coalescent to describe a pseudo-maximum likelihood method of estimating
population size or substitution rates when the tree is known (Seo et al.,
2002a). However, it should be noted that currently implemented coalescent
methods make a number of limiting assumptions, specifically, no population
subdivision, no recombination within the genome region under investigation,
and no selection.

Theoretical developments in the future will enable these assumptions to be
relaxed, but for the time being our understanding of the molecular biology
and life cycle of the virus concerned should be used to carefully interpret the
results of each analysis. For example, strong natural selection acts on many
viruses, but often acts unequally at different levels: within an infected individ-
ual, HIV is constantly adapting in response to the host’s cellular and humoral
immune responses and selection is obviously strong. However, successful
transmission to a new host almost always leads to the establishment of a
persistent infection, so the number of ‘‘offspring’’ infections generated by
one infected host is primarily determined by that host’s behaviour, rather
than by particular mutations in the viral genome. Thus the reproductive
success of an HIV infection at the epidemiological level has a low heritability,
and consequently selection at this level will be weak and slow-acting.

4.1. Estimation of Errors Using MCMC

Highest posterior density (HPD) intervals and central posterior density
(CPD) intervals are Bayesian analogues of the confidence interval. HPD and
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CPD intervals of a parameter of interest, such as substitution rate, can be
obtained empirically from the frequency distribution of the parameter’s
values sampled by the MCMC algorithm. This is valid because after the
MCMC algorithm has had an appropriate time to converge (referred to as
the burn-in period) it will begin to sample values of a parameter at a
frequency proportional to their (posterior) probability density. The resulting
frequency distribution of a parameter of interest is thus an empirical
estimate of the marginal posterior probability density of the parameter.
These marginal densities can be used to reject specific a priori hypotheses;
for example, the substitution rates of two genes are the same.

4.2. Examples of MCMC Estimation Methods

MCMC was used to estimate the substitution rate of DEN-4 without
assuming exact knowledge of the tree topology. In addition, a coalescent
prior on node heights was introduced to investigate its effect on rate
estimation. Figure 7 shows the marginal probability distributions for each of
the three codon positions as well as the mean substitution rate across all
nucleotide positions. The posterior estimate of mean substitution rate in
DEN-4 was 8.29� 10�4 [6.33� 10�4, 10.4� 10�4] substitutions per site per
year. Notice that this HPD interval is slightly larger than the ML confidence
interval (Figure 9). This reflects the increased uncertainty in the rate due
to the uncertainty in the exact genealogical relationships of the sequences.
By assuming a single tree topology the ML analysis gave artificially tight
confidence intervals. Interestingly, the confidence intervals for the age of the
root are smaller in the MCMC analysis. This probably reflects the effect of
the coalescent prior on the tree topology, as assumptions about population
processes will tend to reduce the variance in estimates of node times.

Figure 8 shows the resulting probability densities of substitution rate for
two independent MCMC analyses of HIV-1 dataset. The only difference
between the models used was that the first analysis assumed a constant
population size whereas the second allowed an exponentially expanding
population (with the growth rate included as a parameter of the model). The
two distributions are remarkably similar demonstrating a robustness of the
estimate of rate to the exact choice of prior on the distribution of internal
node ages. The posterior estimates and HPD intervals of substitution
rate for the constant size and exponentially expanding population models
were 6.19� 10�3 [5.32� 10�3, 7.07� 10�3] and 6.11� 10�3 [5.33� 10�3,
6.88� 10�3] substitutions per site per year, respectively. With these
examples, we have tried to demonstrate that properties such as (i) low
variance, (ii) flexibility of modelling and (iii) accurate assessment of

VIRAL EVOLUTIONARY RATES 349



statistical errors, make MCMC an attractive and practical option for the
estimation of evolutionary parameters such as substitution rate.

5. DISCUSSION

Temporally spaced data from rapidly evolving viruses provide an
opportunity to ask questions about population dynamics and molecular
evolution that are not possible with slow-evolving organisms or con-
temporaneous sequence data. Although we have concentrated on the
estimation of molecular evolutionary rates there are a number of closely

Figure 7 Application of the Bayesian inference approach to the DEN 4 data set.
The figure shows the estimated posterior distributions of substitution rate for each
codon position. In addition, the estimated posterior distribution of the mean rate is
shown. Interestingly, the mean rate distribution does not overlap with any of the
codon position distributions. The figure overlays results from four separate runs of
the MCMC algorithm on the same data each with different random starting
topologies. The similarity of the four distributions indicates that the algorithm has
converged to the correct posterior distribution and thus has sampled the parameter
space of the model adequately.
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related problems that can be tackled using the methods above. We outline
a few of them below.

5.1. Estimation of Divergence Times

Temporally spaced sequence data allows for the independent estimation of
divergence times in viral phylogenies and genealogies. Traditionally, in the
wider field of phylogenetic inference, independent calibration information
has been used to determine the divergence time of an anchor node and then,
assuming a molecular clock, used to estimate the ages of other divergences
in the tree (for example, Shields and Wilson, 1987). However internal-node
calibration methods suffer difficulties when there are few calibration points
and when the substitution rates over long timescales are used to calibrate
divergences over short timescales. It is also generally unlikely that internal-
node calibrations will be available for viral sequence data, although a
few examples do exist (e.g., Leitner and Albert, 1999; Pybus et al., 2001;
Van Dooren et al., 2001).

Figure 8 Application of the Bayesian inference approach to the HIV 1 data set.
The figure shows results from two separate runs of the MCMC algorithm, the first
assuming a constant population size for the coalescent model (thin line) and the
second allowing an exponentially expanding population (bold line).
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5.2. The Neutral Theory of Molecular Evolution
and the Molecular Clock

The clock-like nature of many rapidly evolving viruses has been used to
support both the molecular clock hypothesis (e.g., Leitner and Albert, 1999)
and Kimura’s neutral theory of evolution (e.g., Gojobori et al., 1990).
Although there is now fairly strong evidence of positive selection in HIV-1
(Nielsen and Yang, 1998), it still appears to be a relatively minor
contribution to the molecular evolution of the HIV-1 genome as a whole.
In fact, recent preliminary evidence of a negative correlation between
population size and mutation rate suggests that negative selection imposed
by functional constraints is more important and ubiquitous in HIV-1

Figure 9 A comparison of the parameter estimates produced by the different
methods discussed in this paper; root to tip linear regression (RT), pairwise linear
regression (PW), maximum likelihood (ML) and Bayesian Markov chain Monte
Carlo inference (MCMC). (a) Comparison of the results obtained for the time of the
most recent common ancestor for the DEN 4 data set. (b) Comparison of the results
obtained for the rate of substitution for the DEN 4 data set. (c) Comparison of the
results obtained for the rate of substitution for the HIV 1 data set. For this data set,
the MCMC estimates under both the constant population size and the exponential
growth models are shown.
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evolution than positive selection (Seo et al., 2002a). This observation can be
explained by either the nearly neutral theory or the slightly deleterious
model of molecular evolution (Ohta and Kimura, 1971; Ohta, 1987;
Tachida, 1991; discussed in Gillespie, 1995). The difficulty is that the strict
molecular clock hypothesis does not appear to survive careful scrutiny. For
example, only 7 out of 50 RNA viruses fit a strict molecular clock when
tested in one recent comprehensive study (Jenkins et al., 2002). However,
the authors of that study went on to show by simulation that even for the
viruses that did not obey a strict molecular clock, the substitution rates
estimated could still be regarded as an accurate reflection of the average
substitution rate. A more satisfactory solution to this problem is the recent
development of ‘relaxed clock’ models of substitution (Thorne et al., 1998;
Huelsenbeck et al., 2000). These models allow molecular evolutionary rates
to vary over time and across lineages. In the future, incorporation of these
methods into the analysis of temporally spaced sequence data should allow
both estimation of average evolutionary rate and the extent of rate variation
across lineages. This has already begun, with a recent description of an
MCMC method (though without considering phylogenetic uncertainty)
that allows for dated-tips and lineage-specific rate variation (Thorne and
Kishino, 2002). The chief concern in the further development of tests of the
molecular clock will be in assessing the relative merits of rate-per-lineage
models and MRDT models in uncovering the trends in the variation of
evolutionary rate.

5.3. Estimating Generation Length

If the ages of sequences are known in calendar units (for example, days or
years) then it is possible to estimate the substitution rate per site per
calendar unit. However, population genetic theory tells us that in a haploid
population the expected genetic diversity, �, is two times the product of
population size and mutation rate per generation. Hence in order to estimate
population size we need to know the conversion factor �, the number of
calendar units per generation (i.e. the generation length). This problem can
be turned on its head if the mutation rate is already known from some
external source. In this case, one can estimate the generation length from
serially sampled genetic data, given the mutation rate. A number of methods
have been described to do this for HIV-1 (Rodrigo et al., 1999; Fu, 2001;
Seo et al., 2002a) and all agree closely with methods based on viral load
dynamics. This congruence between genetic methods and viral load
dynamics is encouraging because it occurs despite completely different
sources of data. The most recent of these methods, a pseudo-likelihood
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method (Seo et al., 2002a), was used to estimate the generation length of
nine intra-patient data sets. Assuming a single underlying mutation rate,
they estimated that generation length in HIV-1 varied from 0.73 to 2.43 days
among the nine patients, again showing close congruence with early work.

5.4. Conclusion

Recent maximum likelihood and Bayesian methods of analysis have filled
an important gap in the study of viral evolution. These methods both
provide a wealth of options for hypothesis testing and model comparison by
providing a solid statistical basis for genealogy-based inference of molecular
rates, based on coalescent theory and likelihood models of molecular
evolution. However, as mentioned above, the methods described here are
still limited by a number of simplifying assumptions. Substantial population
subdivision, recombination or selection may adversely affect analysis of
temporally spaced viral sequences. Most of the methods described here
assume single panmictic populations, free of recombination and selection.
Therefore, extensions of the Bayesian inference framework described here to
take into account migration between subpopulations, substantial recombi-
nation and selection effects are needed. Most of these processes fall squarely
within the purview of population genetics and are already understood in the
context of contemporaneous samples of sequences. We expect that in the
near future methods that allow incorporation of all of these effects will
exist for analysis of rapidly evolving viruses. In fact, very early on it was
predicted that temporally spaced data would provide the opportunity to
shed new light on these forces:

‘‘To sum up, selective trends will be detectable only if data from the past are

available.’’ (Cavalli Sforza and Edwards, 1967)

The use of the methods outlined in this article, and their derivatives, will
assist in answering fundamental questions about the tempo and mode of
viral molecular evolution.

Software packages for performing some of these analyses and links to
other resources are available from http://evolve.zoo.ox.ac.uk/VirusRates/.
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